期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第4期 doi: 10.1016/j.eng.2018.06.004

抗白粉病基因 Pm40 在我国“后 Pm21 时代”小麦育种中的重要作用

a Sichuan Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China

b State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

收稿日期: 2017-08-08 修回日期: 2017-12-03 录用日期: 2018-06-26 发布日期: 2018-07-04

下一篇 上一篇

摘要

由小麦白粉菌[Blumeria graminis f. sp. triticiBgt)] 引起的小麦白粉病是一种重要的小麦叶部病害,对小麦的产量产生很大的影响。20 世纪80 年代,通过簇毛麦(Heuchera villosa)的6VS 染色体与小麦6AL 染色体易位将抗白粉病基因Pm21 转移到普通小麦中。最近,在一些地方发现了对Pm21 有毒的Bgt,虽然这些菌株的病理学特性还有待研究,但这一现象提醒小麦育种者应注意应用Pm21 的风险。来源于普通小麦与中间偃麦草(Thinopyrum intermedium)杂种后代的抗白粉病基因Pm40,被定位在小麦7BS 染色体上,对Bgt 具有广谱和持久的抗性。通过细胞学研究,并未在Pm40 的载体品种中发现大片段外缘染色体。过去几年的研究发现,Pm40 的载体品种具有优良的农艺性状。因此,我们相信在未来的育种工程中,Pm40 将会在Pm21 的抗性被克服之后起巨大的作用。另外,Pm21 Pm40 都来源于外缘物种,这暗示着外源基因的抗性可能比小麦本身的基因更为持久和有效。

图片

图1

参考文献

[ 1 ] Zhao Z, Sun H, Song W, Lu M, Huang J, Wu L, et al. Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet 2013;126(12):3081–9. 链接1

[ 2 ] Luo PG, Hu XY, Chang ZJ, Zhang M, Zhang HQ, Ren ZL. A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Phytoprotection 2009;90(2):57–63. 链接1

[ 3 ] Ma P, Xu H, Han G, Luo Q, Xu Y, Zhang X, et al. Characterization of a segregation distortion locus with powdery mildew resistance in a wheat– Thinopyrum intermedium introgression line WE99. Plant Dis 2016;100 (8):1541–7. 链接1

[ 4 ] Zhong S, Ma L, Fatima SA, Yang J, Chen W, Liu T, et al. Collinearity analysis and high-density genetic mapping of the wheat powdery mildew resistance gene Pm40 in PI672538. PLoS One 2016;11(10):e0164815. 链接1

[ 5 ] Shen XK, Ma LX, Zhong SF, Liu N, Zhang M, Chen WQ, et al. Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor Appl Genet 2015;128(3):517–28. 链接1

[ 6 ] Wiersma AT, Pulman JA, Brown LK, Cowger C, Olson EL. Identification of Pm58 from Aegilops tauschii. Theor Appl Genet 2017;130(6):1123–33. 链接1

[ 7 ] Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 1998;96(8):1129–34. 链接1

[ 8 ] Singrün Ch, Hsam SLK, Hartl L, Zeller FJ, Mohler V. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet 2003;106 (8):1420–4. 链接1

[ 9 ] Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, et al. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 2008;117 (8):1205–12. 链接1

[10] Hsam SLK, Zeller FJ. Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘‘Amigo”. Plant Breed 1997;116(2):119–22. 链接1

[11] Xie W, Ben-David R, Zeng B, Dinoor A, Xie C, Sun Q, et al. Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed 2012;29 (2):399–412. 链接1

[12] Gao H, Zhu F, Jiang Y, Wu J, Yan W, Zhang Q, et al. Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet 2012;125(5):967–73. 链接1

[13] Briggle LW, Sears ER. Linkage of resistance to Erysiphe graminis f. sp. tritici (Pm3) and hairy glume (Hg) on chromosome 1A of wheat. Crop Sci 1966;6 (6):559–61. 链接1

[14] Briggle LW. Three loci in wheat involving resistance to Erysiphe graminis f. sp tritici. Crop Sci 1966;6(5):461–5. 链接1

[15] Zeller FJ, Lutz J, Stephan U. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) 1. Mlk and other alleles at the Pm3 locus. Euphytica 1993;68(3):223–39. 链接1

[16] Zeller FJ, Hsam SLK. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.). In: Slinkard AE, editor. Proceedings of the 9th International Wheat Genetics Symposium; 1998 Aug 2–7; Saskatoon, SK, Canada. Saskatoon: University of Saskatchewan; 1998. p. 178–80. 链接1

[17] Yahiaoui N, Kaur N, Keller B. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J 2009;57(5):846–56. 链接1

[18] Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci USA 2009;106(23):9519–24. 链接1

[19] Heun M, Friebe B. Introgression of powdery mildew resistance from rye into wheat. Phytopathology 1990;80:242–5. 链接1

[20] Shi AN, Leath S, Murphy JP. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 1998;88(2):144–7. 链接1

[21] Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 2013;54(3):259–63. 链接1

[22] Ma ZQ, Sorrells ME, Tanksley SD. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 1994;37 (5):871–5. 链接1

[23] McIntosh RA, Bennett FG. Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust. J Biol Sci 1979;32(1):115–26. 链接1

[24] Yi Y, Liu H, Huang X, An L, Wang F, Wang X. Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Plant Breed 2008;127(2):116–20. 链接1

[25] Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed 2012;29(2):449–56. 链接1

[26] Alam MA, Xue F, Wang C, Ji W. Powdery mildew resistance genes in wheat: identification and genetic analysis. J Mol Biol Res 2011;1(1):1–20.

[27] Reader SM, Miller TE. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 1991;53 (1):57–60. 链接1

[28] Zhang R, Sun B, Chen J, Cao A, Xing L, Feng Y, et al. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet 2016;129 (10):1975–84. 链接1

[29] Xie C, Sun Q, Ni Z, Yang T, Nevo E, Fahima T. Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31. Plant Breed 2004;123(2):198–200. 链接1

[30] Chen P, Qi L, Zhou B, Zhang S, Liu D. Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 1995;91(6–7):1125–8. 链接1

[31] Sears ER, Briggle LW. Mapping the gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci 1969;9(1):96–7. 链接1

[32] Neu C, Stein N, Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 2002;45(4):737–44. 链接1

[33] Hartl L, Mohler V, Zeller FJ. Hsam SLK, Schweizer G. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L.). Genome 1999;42(2):322–9. 链接1

[34] Schneider DM, Heun M, Fischbeck G. Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breed 1991;107(2):161–4. 链接1

[35] Perugini LD, Murphy JP, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet 2008;116(3):417–25. 链接1

[36] Peusha H, Enno T, Priilinn O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas 2000;132(1):29–34. 链接1

[37] Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, et al. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 2008;116(8):1155–66. 链接1

[38] Hsam SLK, Lapochkina IF, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 2003;133(3):367–70.

[39] Jørgensen JH, Jensen CJ. Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 1973;22(2):423. 链接1

[40] Qin B, Cao A, Wang H, Chen T, You F, Liu Y, et al. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 2011;123(2):207–18. 链接1

[41] Rong JK, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 2000;115(2):121–6. 链接1

[42] Zhu Z, Zhou R, Kong X, Dong Y, Jia J. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 2005;48(4):585–90. 链接1

[43] Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, et al. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 2009;119(2):223–30. 链接1

[44] Piarulli L, Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A, et al. Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 2012;196:101–6. 链接1

[45] Zhan H, Li G, Zhang X, Li X, Guo H, Gong W, et al. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PLoS One 2014;9 (11):e113455. 链接1

[46] Liu W, Koo DH, Xia Q, Li C, Bai F, Song Y, et al. Homoeologous recombination- based transfer and molecular cytogenetic mapping of powdery mildew- resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet 2017;130(4):841–8. 链接1

[47] Ceoloni C, Signore GD, Ercoli L, Donini P. Locating the alien chromatin segment in common wheat–Aegilops longissima mildew resistant transfers. Hereditas 1992;116(3):239–45. 链接1

[48] Li G, Fang T, Zhang H, Xie C, Li H, Yang T, et al. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 2009;119(3):531–9. 链接1

[49] Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 1994;34 (3):621–5. 链接1

[50] Hsam SL, Mohler V, Zeller FJ. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. J Appl Genet 2014;55(2):155–62. 链接1

[51] Liu Z, Sun Q, Ni Z, Nevo E, Yang T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 2002;123(1):21–9. 链接1

[52] Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AM, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 2008;117:135. 链接1

[53] Petersen S, Lyerly JH, Worthington ML, Parks WR, Cowger C, Marshall DS, et al. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet 2015;128 (2):303–12. 链接1

[54] Tosa Y, Tokunaga H, Ogura H. Identification of a gene for resistance to wheat grass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome 1988;30(4):612–4. 链接1

[55] Tosa Y, Sakai K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome 1990;33(2):225–30. 链接1

[56] Hao Y, Parks R, Cowger C, Chen Z, Wang Y, Bland D, et al. Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 2015;128(3):465–76. 链接1

[57] Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 1996;92(5):559–65. 链接1

[58] Järve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 2000;43(2):377–81. 链接1

[59] Hsam SLK, Huang X, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 6. Alleles at the Pm5 locus. Theor Appl Genet 2001;102(1):127–33. 链接1

[60] Nematollahi G, Mohler V, Wenzel G, Zeller FJ, Hsam SLK. Microsatellite mapping of powdery mildew resistance allele Pm5d from common wheat line IGV1-455. Euphytica 2008;159(3):307–13. 链接1

[61] Huang X, Wang L, Xu M, Röder MS. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 2003;106(5):858–65. 链接1

[62] Xiao M, Song F, Jiao J, Wang X, Xu H, Li H. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 2013;126(5):1397–403. 链接1

[63] Law CN, Wolfe MS. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 1966;8 (3):462–70. 链接1

[64] Luo P, Luo H, Chang Z, Zhang H, Zhang M, Ren Z. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 2009;118(6):1059–64. 链接1

[65] Tosa Y, Tsujimoto H, Ogura H. A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome 1987;29(6):850–2. 链接1

[66] Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 2000;101(3):407–14. 链接1

[67] Huang XQ, Röder MS. High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetica 2011;139 (9):1179–87. 链接1

[68] Xue F, Wang C, Li C, Duan X, Zhou Y, Zhao N, et al. Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet 2012;125(7):1425–32. 链接1

[69] He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, et al. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 2009;118 (6):1173–80. 链接1

[70] Ma P, Xu H, Xu Y, Li L, Qie Y, Luo Q, et al. Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet 2015;128(4):613–22. 链接1

[71] Xu H, Yi Y, Ma P, Qie Y, Fu X, Xu Y, et al. Molecular tagging of a new broad- spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet 2015;128(10):2077–84. 链接1

[72] Lutz J, Hsam SLK, Limperti E, Zeller FJ, et al. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 1995;74:152–6. 链接1

[73] Qiu Y, Sun X, Zhou R, Kong X, Zhang S, Jia J. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun 2006;34(4):1267–73. 链接1

[74] Miranda LM, Murphy JP, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 2006;113(8):1497–504. 链接1

[75] Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 2007;114(8):1451–6. 链接1

[76] Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, et al. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 2011;123:1099. 链接1

[77] Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 2005;111(4):731–5. 链接1

[78] Zeller FJ, Kong L, Hartl L, Mohler V. Hsam SLK. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 7. Gene Pm29 in line Pova. Euphytica 2002;123(2):187–94.

[79] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science 2010;327(5967):818–22. 链接1

[80] Briggle LW. Transfer of resistance to Erysiphe graminis f. sp. tritici from Khapli emmer and Yuma durum to hexaploid wheat. Crop Sci 1966;6(5):459–61. 链接1

[81] Zou SZ, Wang H, Li YW, Kong ZS, Tang DZ. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 2018;218(1):298–309. 链接1

[82] Jia J, CMiller TE, Reader SM, Gale MD. RFLP tagging of a gene Pm12 for powdery mildew resistance in wheat (Triticum aestivum L.). Sci China B Chem Life Sci Earth Sci 1994;37(5):531–7. 链接1

[83] Hao M, Liu M, Luo J, Fan C, Yi Y, Zhang L, et al. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci. 2018. 链接1

[84] Zeller FJ. 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS, editors. Proceedings of the 4th International Wheat Genetics Symposium; 1973 Aug 6–11; Columbia, MO, USA. Columbia: University of Missouri; 1973. p. 209–21. 链接1

[85] Luo P, Hu X, Ren Z, Zhang H, Shu K, Yang Z. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome 2008;51(11):922–7. 链接1

[86] Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, McIntosh RA, et al. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J 2014;79(6):904–13. 链接1

[87] Luo P, Zhang H, Shu K, Wu X, Zhang H, Ren Z. The physiological genetic effects of 1BL/1RS translocated chromosome in ‘‘stay green” wheat cultivar CN17. Can J Plant Sci 2009;89(1):1–10. 链接1

[88] Mohler V, Hsam SLK, Zeller FJ, Wenzel G. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 2001;120(5):448–50. 链接1

[89] Zeller FJ, Hsam SLK. Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor Appl Genet 1996;93(1–2):38–40. 链接1

[90] Ren T, Tang Z, Fu S, Yan B, Tan F, Ren Z, et al. Molecular cytogenetic characterization of novel wheat-rye T1RS. 1BL translocation lines with high resistance to diseases and great agronomic traits. Front Plant Sci 2017;8:799. 链接1

[91] Villareal RL, Rajaram S, Mujeeb-Kazi A, Toro E. The effect of chromosome 1B/ 1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breed 1991;106(1):77–81. 链接1

[92] Zimmermann G, Wenisch K, Strass F. Further results of attempts to combine mildew resistance genes in winter wheat. Vorträge Pflanzenzüchtung 1984;6:85–102. 链接1

[93] Lutz J, Limpert E, Bartoš P, Zeller FJ. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Plant Breed 1992;108(1):33–9.

[94] El-Shamy MM, Emara HM, Mohamed ME. Virulence analysis of wheat powdery mildew (Blumeria graminis f. sp. tritici) and effective genes in middle Delta, Egypt. Plant Dis 2016;100(9):1927–30. 链接1

[95] Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 2013;76(6):957–69. 链接1

[96] Chen P, Liu D. Cytogenetic studies of hybrid progenies between Triticum aestivum and Haynaldia villosa. J Nanjing Agric Coll 1982;5(4):1–16. Chinese. 链接1

[97] Pei G, Chen P, Liu D. A cytogenetic analysis of some powdery mildew resistant strains of the hybrid progeny between wheat and Haynaldia villosa. J Nanjing Agric Coll 1986;9(1):1–9. Chinese. 链接1

[98] Li G, Chen P, Zhang S, Wang X, He Z, Zhang Y, et al. Effects of the 6VS 6AL translocation on agronomic traits and dough properties of wheat. Euphytica 2007;155(3):305–13. 链接1

[99] Bie T, Zhao R, Zhu S, Chen S, Cen B, Zhang B, et al. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Mol Breed 2015;35:189. 链接1

[100] Song W, Xie C, Du J, Xie H, Liu Q, Ni Z, et al. A ‘‘one-marker-for-two- genes” approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breed 2009;23 (3):357–63. 链接1

[101] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 2011;108 (19):7727–32. 链接1

[102] Liu N, Liu Z, Gong G, Zhang M, Wang X, Zhou Y, et al. Virulence structure of Blumeria graminis f. sp. tritici and its genetic diversity by ISSR and SRAP profiling analyses. PLoS One 2015;10(6):e0130881. 链接1

[103] Shi Y, Wang B, Li Q, Wu X, Wang F, Liu H, et al. Analysis of the virulent genes of Erysiphe graminis f. sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. J Triticeae Crops 2009;29(4):706–11. Chinese. 链接1

[104] Yang L, Xiang L, Zeng F, Wang H, Shi W, Yu D. Virulence gene structure analysis of Blumeria graminis f. sp. tritici in Hubei. Plant Protection 2009;35 (5):76–9. 链接1

[105] Zeng F, Yang L, Gong S, Shi W, Zhang X, Wang H, et al. Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J Integr Agric 2014;13 (11):2424–37. 链接1

[106] Czembor HJ, Domeradzka O, Czembor JH, Man´ kowski DR. Virulence structure of the powdery mildew (Blumeria graminis) population occurring on triticale ( Triticosecale) in Poland. J Phytopathol 2014;162(7–8):499–512. 链接1

[107] Ma Q, Luo P, Ren Z, Jiang H, Yang Z. Genetic analysis and chromosomal location of two new genes for resistance to powdery mildew in wheat Triticum aestivum L. Acta Agronomica Sinica 2007;33(1):1–8. Chinese. 链接1

[108] Young ND, Tanksley SD. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 1989;77(3):353–9. 链接1

[109] Ma L, Zhong S, Liu N, Chen W, Liu T, Li X, et al. Expression profile and physiological and biochemical characterization of hexaploid wheat inoculated with Blumeria graminis f. sp. tritici. Physiol MolPlant Pathol 2015;90:39–48. 链接1

[110] Li X, Xiang Z, Chen W, Huang Q, Liu T, Li Q, et al. Reevaluation of two quantitative trait loci for type II resistance to Fusarium head blight in wheat germplasm PI 672538. Phytopathology 2017;107(1):92–9. 链接1

[111] Liu ZH, Xu M, Xiang Z, Li X, Chen W, Luo P. Registration of the novel wheat lines L658, L693, L696, and L699, which are resistance to Fusarium head blight, stripe rust, and powdery mildew. J Plant Regist 2015;9 (1):121–4. 链接1

[112] Huang Q, Li X, Chen W, Xiang Z, Zhong S, Chang Z, et al. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet 2014;127(4):843–53. 链接1

[113] Macer RCF. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In: Proceedings of the 2nd International Wheat Genetics Symposium; 1963 Aug 18–24; Lund, Sweden; 1963. p. 127–42. 链接1

[114] Macer RCF. Plant pathology in a changing world. Trans Br Mycol Soc 1975; 65(3):IN1,351–67. 链接1

[115] Gerechter-Amitai ZK, Silfhout CV, Grama A, Kleitman F. Yr15-a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 1989;43(1–2):187–90. 链接1

[116] Yildirim A, Jones SS, Murray TD, Line RF. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis 2000;84(1):40–4. 链接1

[117] Dangl JL, Jones JDG. Plant pathogens and integrated defence responses to infection. Nature 2001;411(6839):826–33. 链接1

相关研究