期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第4期 doi: 10.1016/j.eng.2018.07.009

大豆胞囊线虫抗性研究现状及其对大豆育种的启示

Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA

收稿日期: 2017-09-21 修回日期: 2018-01-18 录用日期: 2018-07-10 发布日期: 2018-07-17

下一篇 上一篇

摘要

大豆胞囊线虫(SCN,Heterodera glycines)是危害全球大豆生产最严重的线虫。作物轮作和培育抗线虫品种是防治线虫的主要方法。随着越来越多能够克服常用抗源的毒性SCN 群体出现,有必要寻找更多新的抗源或拓宽抗性遗传背景。本文综述了大豆抗SCN 基因的研究进展,以及这些基因如何相互作用,从而使大豆能够抗SCN。本文还提供了最新分子作图和分子标记,可用于不同抗性品系和品种的大规模选择和鉴定,以加速常规育种计划。深入了解SCN 寄生蛋白和大豆对病原体的抗性是通过基因修饰、基因叠加、回交或基因工程引入新的抗源而使抗源多样化的关键。

图片

图1

图2

图3

参考文献

[ 1 ] Hymowitz T. On the domestication of the soybean. Econ Bot 1970;249 (4):408–21. 链接1

[ 2 ] Lee GA, Crawford GW, Liu L, Sasaki Y, Chen X. Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS One 2011;6(11):e26720. 链接1

[ 3 ] Liu X, Li J, Zhang D. History and status of soybean cyst nematode in China. Int J Nematol 1997;7:18–25. 链接1

[ 4 ] Peng D, Pend H, Wu D, Huang W, Ye W, Cui J. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia, China. Plant Dis 2016;100:229. 链接1

[ 5 ] Wang D, Duan Y, Wang Y, Zhu X, Chen L, Liu X, et al. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi Provinces, China. Plant Dis 2015;99:893. 链接1

[ 6 ] Wang H, Zhao H, Chu D. Genetic structure analysis of populations of the soybean cyst nematode, Heterodera glycines, from North China. Nematology 2015;17(5):591–600.

[ 7 ] Wang D. Distribution, virulence phenotypes and genetic structure of Heterodera glycines in China. In: Proceeding of 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016. p. S1.1–9. 链接1

[ 8 ] Hori S. Phytopathol notes. Sick soil of soybean caused by nematodes. J Plant Protect 1916;2:927–30. 链接1

[ 9 ] Winstead NN, Skotland CB, Sasser JN. Soybean cyst nematode in North Carolina. Plant Dis Rep 1955;39:9–11. 链接1

[10] Ichinohe M. On the soybean nematode, Heterodera glycines n. sp. from Japan Jpn J Appl Entomol Zool 1952;17:1–4. Japanese. 链接1

[11] Koenning SR, Wrather JA. Suppression of soybean yield potential in the continental United States from plant diseases estimated from 2006 to 2009. Plant Health Prog 2010 Nov 22. 链接1

[12] Joos DK, Esgar RW, Henry BR, Nafziger ED. Soybean variety test results in Illinois 2013. Report. Urbana: University of Illinois; 2013. 链接1

[13] Tylka GL, Mullaney MP. Soybean cyst nematode-resistant soybeans varieties for Iowa. Ames: Iowa State University; 2016. 链接1

[14] Riggs RD, Schmitt DP. Complete characterization of the race scheme for Heterodera glycines. J Nematol 1988;20(3):392–5. 链接1

[15] Niblack TL, Arelli PR, Noel GR, Opperman CH, Orf JH, Schmitt DP, et al. A revised classification scheme for genetically diverse populations of Heterodera glycines. Soybean Sci 2002;34(4):279–88. 链接1

[16] Concibido VC, Diers BW, Arelli PR. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 2004;44:1121–31. 链接1

[17] Mitchum MG, Wrather JA, Heinz RD, Shannon JG, Danekas G. Variability in distribution and virulence phenotypes of Heterodera glycines in Missouri during 2005. Plant Dis 2007;91:1473–6. 链接1

[18] Niblack TL, Colgrove AL, Colgrove K, Bond JP. Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788. Plant Health Prog 2008:18. 链接1

[19] Zheng J, Li Y, Chen S. Characterization of the virulence phenotypes of Heterodera glycines in Minnesota. J Nematol 2006;38(3):383–90. 链接1

[20] Acharya K, Tande C, Byamukarma E. Determination of Heterodera glycines virulence phenotypes occurring in South Dakota. Plant Dis 2016;100:2281–6. 链接1

[21] Chowdhury I, Yan GP, Plaisance A, Nelson B, Markell S, Helms TC, et al. Population diversity of soybean cyst nematode in North Dakota fields. In: Proceeding of 55th Annual Meeting of the Society of Nematologists; 2016 Jul 17–21; Montreal, QC, Canada; 2016. p. 68–9.

[22] Chowdhury IA, Yan GP, Plaisance A. Characterizing virulence phenotypes of soybean cyst nematode (Heterodera glycines) in infested fields of North Dakota. Phytopathology 2017;107(S1):3. 链接1

[23] Mitchum MG. Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology 2016;106:1444–50. 链接1

[24] Hussey RS, Grundler FM. Nematode parasitism of plants. In: Perry RN, Wright J, editors. Proceedings of the physiology and biochemistry of free-living and plant parasitic nematodes. Oxford: CAB International Press; 1998. p. 213–43.

[25] Atkinson HJ, Harris PD. Changes in nematode antigens recognized by monoclonal antibodies during early infections of soybean with cyst nematode Heterodera glycines. Parasitology 1989;98:479–87. 链接1

[26] Wyss U. Observations on the feeding behavior of Heterodera schachtii throughout development, including events during molting. Fundam Appl Nematol 1992;15:75–89. 链接1

[27] Dong K, Opperman CH. Genetic analysis of parasitism in the soybean cyst nematode Heterodera glycines. Genetics 1997;146(4):1311–8. 链接1

[28] Smant G, Stokkermans JP, Yan Y, de Boer JM, Baum TJ, Wang X, et al. Endogenous cellulases in animals: isolation of b-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 1998;95(9):4906–11. 链接1

[29] Wang X, Meyers D, Yan Y, Baum T, Smant G, Hussey R, et al. In planta localization of a b-1,4-endoglucanase secreted by Heterodera glycines. Mol Plant Microbe Interact 1999;12(1):64–7. 链接1

[30] De Boer JM, Yan Y, Wang X, Smant G, Hussey RS, Davis EL, et al. Developmental expression of secretory b-1,4-endoglucanases in the subventral esophageal glands of Heterodera glycines. Mol Plant Microbe Interact 1999;12(8):663–9. 链接1

[31] De Boer JM, Davis EL, Hussey RS, Popeijus H, Smant G, Baum TJ. Cloning of a putative pectate lyase gene expressed in the subventral esophageal glands of Heterodera glycines. J Nematol 2002;34(1):9–11. 链接1

[32] Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS. Identification of a new - 1,4-endoglucanase gene expressed in the esophageal subventral gland cells of Heterodera glycines. J Nematol 2002;34(1):12–5. 链接1

[33] Yan Y, Davis EL. Characterisation of guanylyl cyclase genes in the soybean cyst nematode, Heterodera glycines. Int J Parasitol 2002;32(1):65–72. 链接1

[34] Bekal S, Niblack TL, Lambert KN. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Mol Plant Microbe Interact 2003;16(5):439–46. 链接1

[35] Olsen AN, Skriver K. Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends Plant Sci 2003;8(2):55–7. 链接1

[36] Guo X, Chronis D, De La Torre CM, Smeda J, Wang X, Mitchum MG. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol J 2015;13 (6):801–10. 链接1

[37] Bekal S, Domier LL, Gonfa B, Lakhssassi N, Meksem K, Lambert KN. A SNARE- like protein and biotin are implicated in soybean cyst nematode virulence. PLoS One 2015;10(12):e0145601. 链接1

[38] Peng D, Peng H, Huang W, Kong L. Molecular characterization and functional analysis of the ran binding protein genes from soybean cyst nematodes Heterodera glycines. In: Proceeding of 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016. p. S1.7. 链接1

[39] Ross JP. Host-parasite relationship of the soybean cyst nematode in resistant soybean roots. Phytopathology 1958;48:578–9.

[40] Endo BY. Feeding plug formation in soybean root infected with the soybean cyst nematode. Phytopatology 1978;68:1022–31.

[41] Endo BY. Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines. Revue Nétnatol 1991;14 (1):73–94. French. 链接1

[42] Endo BY. Atlas on ultrastructure of infective juveniles of the soybean cyst nematode, Heterodera glycines. Washington, DC: US Department of Agriculture; 1998. 链接1

[43] Endo BY. Cellular responses to infection. In: Riggs RD, Wrather JA, editors. Biology and management of the soybean cyst nematode. St. Paul: APS Press; 1992. p. 37–49. 链接1

[44] Gheysen G, Fenoll C. Gene expression in nematode feeding sites. Annu Rev Phytopathol 2002;40:191–219. 链接1

[45] Endo BY. Histological responses of resistant and susceptible soybean varieties, and backcross progeny to entry development of Heterodera glycines. Phytopathology 1965;55:375–81.

[46] Jones MGK, Northcote DH. Nematode-induced syncytium—a multinucleate transfer cell. J Cell Sci 1972;10(3):789–809. 链接1

[47] Jones MGK. The development and function of plant cells modified by endoparasitic nematodes. In: Zuckerman BM, Rohde RA, editors. Plant parasitic nematodes, vol. III. New York: Academic Press; 1981. p. 255–79. 链接1

[48] Acedo JR, Dropkin VH, Luedders VD. Nematode population attrition and histopathology of Heterodera glycines-soybean associations. J Nematol 1984;16(1):48–56. 链接1

[49] Riggs RD, Kim KS, Gipson I. Ultrastructural changes in Peking soybeans infected with Heterodera glycines. Phytopathology 1973;63:76–84. 链接1

[50] Kim YH, Riggs RD, Kim KS. Structural changes associated with resistance of soybean to Heterodera glycines. J Nematol 1987;19(2):177–87. 链接1

[51] Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY, et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 2010;107(51):22032–7. 链接1

[52] Kim YH, Kim KS, Riggs RD. Initial subcellular responses of susceptible and resistant soybeans infected with the soybean cyst nematode. Plant Pathol J 2012;28(4):401–8. 链接1

[53] Kim KS, Riggs RD. Cytopathological reactions of resistant soybean plants to nematode invasion. In: Riggs RD, Wrather JA, editors. Biology and management of the soybean cyst nematode. St. Paul: APS Press; 1992. p. 157–68.

[54] Kim YH, Kim KS, Riggs RD. Differential subcellular responses in resistance soybeans infected with soybean cyst nematode races. Plant Pathol J 2010;26 (2):154–8. 链接1

[55] Mahalingam R, Skorupska HT. Cytological expression of early response to infection by Heterodera glycines Ichinohe in resistant PI 437654 soybean. Genome 1996;39(5):986–8. 链接1

[56] Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF. Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. Plant Mol Biol 2011;75(1–2):141–65. 链接1

[57] Caldwell BE, Brim CA, Ross JP. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines. Agron J 1960;52:635–6. 链接1

[58] Matson AL, Williams LF. Evidence of fourth genes for resistance to the soybean cyst nematode. Crop Sci 1965;5:477. 链接1

[59] Rao-Arelli AP. Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Dis 1994;78:898–900. 链接1

[60] Shannon JG, Anand SC. Basic and new development in breeding for resistance to soybean cyst nematode Heterodera glycines. In: Proceedings of the Thirtieth Brazilian Congress of Phytopathology; 1997 Aug 10–14; Pocos de Caldas, Brazil; 1997. p. 79–84. 链接1

[61] Concibido VC, Denny RL, Boutin SR, Hautea R, Orf JH, Young ND. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci 1994;34(1):240–6. 链接1

[62] Concibido VC, Denny R, Lange D, Danesh D, Orf J, Young N. Genome mapping on soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI88788 using DNA markers. Crop Sci 1997;37:258–64. 链接1

[63] Shoemaker RC, Olson TC. Molecular linkage map of soybean (Glycine max L Merr.). In: O’Brien SJ, editor. Genetic maps: locus maps of complex genomes. New York: Cold Spring Harbor Laboratory Press; 1993. p. 6.131–8. 链接1

[64] Weisemann JM, Matthews BF, Devine TE. Molecular markers located proximal to the soybean cyst nematode resistance gene, Rhg4. Theor Appl Genet 1992;85(2–3):136–8. 链接1

[65] Meksem K, Pantazopoulos P, Njiti VN, Hyten LD, Arelli PR, Lightfoot DA. ‘‘Forrest” resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 2001;103(5):710–7. 链接1

[66] Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the Rhg1 locus. Theor Appl Genet 1999;99:811–8. 链接1

[67] Mudge J, Concibido VC, Denny RL, Young ND, Orf JH. Tools for analyzing soybean cyst nematode resistance and accompanying agronomic traits. Agronomy Abst 1997:85. 链接1

[68] Brucker E, Carlson S, Wright E, Niblack T, Diers B. Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor Appl Genet 2005;111(1):44–9. 链接1

[69] Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature 2010;463(7278):178–83. 链接1

[70] Cui Y, Barampuram S, Stacey MG, Hancock CN, Findley S, Mathieu M, et al. Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics. Plant Physiol 2013;161(1):36–47. 链接1

[71] Mathieu M, Winters EK, Kong F, Wan J, Wang S, Eckert H, et al. Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository. Planta 2009;229(2):279–89. 链接1

[72] Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, et al. TILLING to detect induced mutations in soybean. BMC Plant Biol 2008;8:9. 链接1

[73] Kandoth PK, Heinz R, Yeckel G, Gross NW, Juvale PS, Hill J, et al. A virus- induced gene silencing method to study soybean cyst nematode parasitism in Glycine max. BMC Res Notes 2013;6:255. 链接1

[74] Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 2012;492(7428):256–60. 链接1

[75] Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 2012;338(6111):1206–9. 链接1

[76] Liu X, Liu S, Jamai A, Bendahmane A, Lightfoot DA, Mitchum MG, et al. Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene. Funct Integr Genomics 2011;11(4):539–49. 链接1

[77] Kim M, Hyten DL, Bent AF, Diers BW. Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genome 2010;3:81–9. 链接1

[78] Melito S, Heuberger AL, Cook D, Diers BW, MacGuidwin AE, Bent AF. A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-kinase on soybean cyst nematode resistance. BMC Plant Biol 2010;10:104. 链接1

[79] Cook DE, Bayless AM, Wang K, Guo X, Song Q, Jiang J, et al. Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1- mediated soybean resistance to soybean cyst nematode. Plant Physiol 2014;165(2):630–47. 链接1

[80] Lee TG, Kumar I, Diers BW, Hudson ME. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus. Mol Ecol 2015;24:1774–91. 链接1

[81] Lee GT. Copy number variation mediated resistance to nematode. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13– 15; Coral Gables, FL, USA. St. Paul: APS Press; 2016. p. S1.6. 链接1

[82] Lakhssassi N, Liu S, Bekal S, Zhou Z, Colantonio V, Lambert K, et al. Characterization of the soluble NSF attachment protein gene family identifies two members involved in additive resistance to a plant pathogen. Sci Rep 2017;7:45226. 链接1

[83] Wu XY, Zhou GC, Chen YX, Wu P, Liu LW, Ma FF, et al. Soybean cyst nematode resistance emerged via artificial selection of duplicated serine hydroxymethyltransferase genes. Front Plant Sci 2016;7:998. 链接1

[84] Meksem K, Liu S, Kandoth P, Lakhssassi N, Colantonio V, Kang J, et al. The GmSNAP18 is the Peking-type rhg1-a gene for resistance to soybean cyst nematode. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016. 链接1

[85] Liu S, Kandoth PK, Lakhssassi N, Kang J, Colantonio V, Heinz R, et al. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat Commun 2017;8:14822. 链接1

[86] Concibido VC, Young ND, Lange DA, Denny RL, Danesh D, Orf JH. Targeted comparative genome analysis and qualitative mapping of a major partial- resistance gene to the soybean cyst nematode. Theor Appl Genet 1996;93(1– 2):234–41. 链接1

[87] Davis EL, Hussey RS, Baum TJ, Bakker J, Schots A, Rosso MN, et al. Nematode parasitism genes. Annu Rev Phytopathol 2000;38:365–96. 链接1

[88] Gardner M, Verna A, Mitchum MG. Emerging roles of cyst nematode effectors in exploiting plant cellular processes. Adv Botanical Res 2015;73:259–91. 链接1

[89] Kandoth PK, Ithal N, Recknor J, Maier T, Nettleton D, Baum TJ, et al. The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense- related genes in degenerating feeding cells. Plant Physiol 2011;155 (4):1960–75. 链接1

[90] Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF. Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 2007;226(6):1389–409. 链接1

[91] Matsye PD, Kumar R, Hosseini P, Jones CM, Tremblay A, Alkharouf NW, et al Mapping cell fate decisions that occur during soybean defense responses. Plant Mol Biol 2011;77(4–5):513–28. 链接1

[92] Matthews BF, Beard H, MacDonald MH, Kabir S, Youssef RM, Hosseini P, et al. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta 2013;237(5):1337–57. 链接1

[93] Vaghchhipawala Z, Bassüner R, Clayton K, Lewers K, Shoemaker R, Mackenzie S. Modulations in gene expression and mapping of genes associated with cyst nematode infection of soybean. Mol Plant Microbe Interact 2001;14 (1):42–54. 链接1

[94] Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF. Syncytium gene expression in Glycine max ([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiol Biochem 2010;48(2–3):176–93. 链接1

[95] Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF. A time- course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta 2007;226(6):1423–47. 链接1

[96] Mazarei M, Liu W, Al-Ahmad H, Arelli PR, Pantalone VR, Stewart CN Jr. Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theor Appl Genet 2011;123(7):1193–206. 链接1

[97] Lin J, Mazarei M, Zhao N, Zhu JJ, Zhuang X, Liu W, et al. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnol J 2013;11(9):1135–45. 链接1

[98] Lin J, Mazarei M, Zhao N, Hatcher CN, Wuddineh WA, Rudis M, et al. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. Plant Biotechnol J 2016;14(11):2100–9. 链接1

[99] Mahalingam R, Wang G, Knap HT. Polygalacturonase and polygalacturonase inhibitor protein: gene isolation and transcription in Glycine max-Heterodera glycines interactions. Mol Plant Microbe Interact 1999;12(6):490–8. 链接1

[100] Mazarei M, Puthoff DP, Hart JK, Rodermel SR, Baum TJ. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection. Mol Plant Microbe Interact 2002;15(6):577–86. 链接1

[101] Huang JS, Barker KR. Glyceollin I in soybean-cyst nematode interactions: spatial and temporal distribution in roots of resistant and susceptible soybeans. Plant Physiol 1991;96(4):1302–7. 链接1

[102] Edens RM, Anand SC, Bolla RI. Enzymes of the phenylpropanoid pathway in soybean infected with Meloidogyne incognita or Heterodera glycines. J Nematol 1995;27(3):292–303. 链接1

[103] Bhattacharyya MK, Ngaki M, Sahoo D, Wang B, Swaminathan S. Expression of a receptor-like protein enhances resistance of soybean to multiple pathogen and pests including soybean cyst nematodes. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016. p. S1.2. 链接1

[104] Concibido VC, Young ND, Lange DA, Denny RL, Orf JH. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci 1996;36(6):1643–50. 链接1

[105] Kim KH, Yoon JB, Park HG, Park EW, Kim YH. Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology 2004;94 (12):1295–304. 链接1

[106] Li YH, Shi XH, Li HH, Reif JC, Wang JJ, Liu ZX, et al. Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping. Plant Genome 2016;9(2). 链接1

[107] Zhang H, Li C, Davis EL, Wang J, Griffin JD, Kofsky J, et al. Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG type 2.5.7 in wild soybean (Glycine soja). Front Plant Sci 2016;7:1214. 链接1

[108] Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, et al. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics 2015;16 (1):598. 链接1

[109] Vuong TD, Sonah H, Meinhardt CG, Deshmukh R, Kadam S, Nelson RL, et al. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 2015;16:593. 链接1

[110] Bao Y, Vuong T, Meinhardt C, Tiffin P, Denny R, Chen S, et al. Potential of association mapping and genomic selection to explore PI 88788 derived soybean cyst nematode resistance. Plant Genome 2014;7(3). 链接1

[111] Li Z, Tran D, Noe J, Meksem K, Arelli P. Molecular breeding and novel QTL discovery for soybean cyst nematode resistance. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016. 链接1

[112] Shi Z, Liu S, Noe J, Arelli P, Meksem K, Li Z. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics 2015;16(1):314. 链接1

[113] Kadam S, Vuong TD, Qiu D, Meinhardt CG, Song L, Deshmukh R, et al. Genomic- assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci 2016;242:342–50. 链接1

[114] Yu N, Lee TG, Rosa DP, Hudson M, Diers BW. Impact of Rhg1 copy number,type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean. Theor Appl Genet 2016;129(12):2403–12. 链接1

[115] Yue P, Arelli PR, Sleper DA. Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet 2001;102(6– 7):921–8. 链接1

[116] Yue P, Sleper DA, Arelli PR. Mapping resistance to multiple races of Heterodera glycines in soybean PI 89772. Crop Sci 2001;41:1589–95. 链接1

[117] Brzostowski L. Stacking alleles from multiple sources to increase broad- spectrum genetic resistance to highly virulent soybean cyst nematode isolates. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016.

[118] Kim M, Diers BW. Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Crop Sci 2013;53:775–85. 链接1

[119] Kim M, Hyten DL, Niblack TL, Diers BW. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci 2011;51:934–43. 链接1

相关研究