期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第5期 doi: 10.1016/j.eng.2018.08.006

城市渠化河流生态流量核算方法

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

收稿日期: 2018-03-05 修回日期: 2018-05-10 录用日期: 2018-05-28 发布日期: 2018-08-28

下一篇 上一篇

摘要

城市河流生态流量核算对于水资源规划和河流保护非常重要。以往城市河流生态流量核算方法侧重于满足物种生境维持和污染物稀释的需求。然而,城市河流中很少存在需保护的物种,同时大量城市河流为混凝土化渠道,无需考虑物种生境维持需求;另外,随着城市水污染防治工程的建设,一些城市河流的污染问题可得到有效的控制。对于这类城市渠化河流,如果沿用以往的生态流量核算方法,即从物种生境和污染物稀释的角度来确定生态流量,生态流量的核算结果将很小,潜在地降低了未来水资源分配和管理中对河流生态保护的重视程度。为了更有效地核算渠化城市河流的生态流量,除了满足污染物稀释的需求外,本研究依据河流纵向水文连通程度的不同(高、中、低),提出了3 种情景下的生态流量核算方法。在高水文连通情景下,生态流量旨在维持一定的水流流速,以确保河流的自净能力并减缓藻类的繁殖;在中水文连通情景下,生态流量旨在维持城市河流中被拦水堰分割河段之间的纵向水力连通性,以确保河流中的物质、能量和信息间的交换;在低水文连通情景下,设计的生态流量将进一步减小,改为间歇地向城市河流补水,旨在满足被拦水堰分割河段间的间歇性连通。本研究以十五里河为研究案对象,研究结果表明新建立的生态流量核算方法可以提供更加精确、符合实际的生态流量核算结果,并为生态补水工程的建设和管理提供有效的指导。

图片

图1

参考文献

[ 1 ] Rivaes R, Rodrfguez-Gonzalez PM, Albuquerque A, Pinheiro AN, Egger G, Ferreira MT. Reducing river regulation effects on riparian vegetation using flushing flow regimes. Ecol Eng 2015;81:428-38. 链接1

[ 2 ] Petts GE. Instream flow science for sustainable river management. J Amer Water Resour Assoc 2009;45(5):1071-86. 链接1

[ 3 ] Tharme RE. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl 2003;19(5-6):397-441. 链接1

[ 4 ] Yin X, Yang Z, Petts GE, Kondolf GM. A reservoir operating method for riverine ecosystem protection, reservoir sedimentation control and water supply. J Hydrol (Amst) 2014;512:379-87. 链接1

[ 5 ] Yin X, Yang Z, Petts GE. Reservoir operating rules to sustain environmental flows in regulated rivers. Water Resour Res 2011;47(8):W08509. 链接1

[ 6 ] Haghighi AT, Kl0ve B. Development of monthly optimal flow regimes for allocated environmental flow considering natural flow regimes and several surface water protection targets. Ecol Eng 2015;82:390-9. 链接1

[ 7 ] Smakhtin VU. Low flow hydrology: a review. J Hydrol 2001;240(3-4): 147-86. 链接1

[ 8 ] Reinfelds I, Haeusler T, Brooks AJ, Williams S. Refinement of the wetted perimeter breakpoint method for setting cease-to-pump limits or minimum environmental flows. River Res Appl 2004;20(6):671-85. 链接1

[ 9 ] Shang S. A multiple criteria decision-making approach to estimate minimum environmental flows based on wetted perimeter. River Res Appl 2008;24 ⑴:54-67. 链接1

[10] Wen X, Fang GH, Guo YX, Zhou L. Adapting the operation of cascaded reservoirs on Yuan River for fish habitat conservation. Ecol Modell 2016;337:221-30. 链接1

[11] Li R, Chen Q, Tonina D, Cai D. Effects of upstream reservoir regulation on the hydrological regime and fish habitats of the Lijiang River, China. Ecol Eng 2015;76:75-83. 链接1

[12] Hogberg NP, Hamel MJ, Pegg MA. Age-0 channel catfish Ictalurus punctatus growth related to environmental conditions in the channelized Missouri River, Nebraska. River Res Appl 2016;32(4):744-52. 链接1

[13] Wu YY, Liu ZW, Chen YC, Li MJ. Investigation of velocity distribution and turbulence characteristics in subcritical circular open channel flows using a modified reynolds stress model. J Hydro-Environ Res 2018;19:68-77. 链接1

[14] Yu Q, Liu ZW, Chen YC, Zhu DJ, Li N. Modelling the impact of hydrodynamic turbulence on the competition between Microcystis and Chlorella for light. Ecol Model 2018;370:50-8. 链接1

[15] Ciszewski D, Czajka A. Human-induced sedimentation patterns of a channelized lowland river. Earth Surf Process Landf2015;40(6):783-95. 链接1

[16] Liu ZW, Chen YC, Wu YY, Wang WY, Li L. Simulation of exchange flow between open water and floating vegetation using a modified RNG k-e turbulence model. Environ Fluid Mech 2017;17(2):355-72.

[17] Liu ZW, Zhu DJ, Chen YC, Wang ZG. A modified Holly-Preissmann scheme for simulating sharp concentration fronts in streams with steep velocity gradients using RIV1Q. Water Resour Res 2014;50:9757-65.

[18] EderBL, SteffensenKD, HaasJD,AdamsJD. Short-term survival and dispersal of hatchery-reared juvenile pallid sturgeon stocked in the channelized Missouri River. J Appl Ichthyology 2015;31(6):991-6. 链接1

[19] Goeller B, Wolter C. Performance of bottom ramps to mitigate gravel habitat bottlenecks in a channelized lowland river. Restor Ecol 2015;23 (5):595-606. 链接1

[20] Liu ZW, Chen YC, Zhu DJ. Analytical model for vertical velocity profiles in flows with submerged shrub-like vegetation. Environ Fluid Mech 2012;12 (4):341-6. 链接1

[21] Wang C, Wang P. Management and construction of urban water system. Beijing: Science Press; 2004. Chinese.

[22] Chang F, Tsai YH, Chen P, Coynel A, Vachaud G. Modeling water quality in an urban river using hydrological factors—data driven approaches. J Environ Manage 2015;151:87-96. 链接1

[23] Willis AD, Campbell AM, Fowler AC, Babcock CA, Howard JK, Deas ML, et al. Instream flows: new tools to quantify water quality conditions for returning adult chinook salmon. J Water Res Plann Manage 2016;142(2):04015056. 链接1

[24] Jia H, Ma H, Wei M. Calculation of the minimum ecological water requirement of an urban river system and its deployment: a case study in Beijing central region. Ecol Modell 2011;222(17):3271-6. 链接1

[25] Hiatt M, Passalacqua P. Hydrological connectivity in river deltas: the first- order importance of channel-island exchange. Water Resour Res 2015;51 (4):2264-82. 链接1

[26] Karim F, Kinsey-Henderson A, Wallace J, Godfrey P, Arthington AH, Pearson RG. Modelling hydrological connectivity of tropical floodplain wetlands via a combined natural and artificial stream network. Hydrol Processes 2014;28 (23):5696-710. 链接1

[27] May R. ‘‘Connectivity” in urban rivers: conflict and convergence between ecology and design. Technol Soc 2006;28(4):477-88. 链接1

[28] Bracken LJ, Wainwright J, Ali GA, Tetzlaff D, Smith MW, Reaney SM, et al. Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth Sci Rev 2013;119:17-34. 链接1

[29] Leigh C, Sheldon F. Hydrological connectivity drives patterns of macroinvertebrate biodiversity in floodplain rivers of the Australian wet/dry tropics. Freshw Biol 2009;54(3):549-71. 链接1

[30] Besacier-Monbertrand AL, Paillex A, Castella E. Short-term impacts of lateral hydrological connectivity restoration on aquatic macroinvertebrates. River Res Appl 2014;30(5):557-70. 链接1

[31] Obolewski K. Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecol Eng 2011;37(5):796-805. 链接1

[32] Casas-Mulet R, Alfredsen K, Brabrand A, Saltveit SJ. Survival of eggs of Atlantic salmon (Salmo salar) in a drawdown zone of a regulated river influenced by groundwater. Hydrobiologia 2015;743(1):269-84. 链接1

[33] Heidenwag I, Langheinrich U, Luderitz V. Self-purification in upland and lowland streams. Acta Hydrochim Hydrobiol 2001;29(1):22-33. 链接1

[34] Piccinini M, Sanchez Caro A, Gultemiriam ML, Giorgi A. Estimating the self-depuration capacity of a reach of the Lujan River. Int J Environ Res 2015;9:1037-46. 链接1

[35] Zhang H, Chen R, Li F, Chen L. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures. Chin J Oceanol Limnol 2015;33(2):430-8. 链接1

[36] Lian J, Yao Y, Ma C, Guo Q. Reservoir operation rules for controlling algal blooms in a tributary to the impoundment of three gorges dam. Water 2014;6 (10):3200-23. 链接1

[37] Niazkar M, Afzali SH. Optimum design of lined channel sections. Water Resour Manage 2015;29(6):1921-32. 链接1

[38] Escartfn J, Aubrey DG. Flow structure and dispersion within algal mats. Estuar Coast Shelf Sci 1995;40(4):451-72. 链接1

[39] Mitrovic SM, Oliver RL, Rees C, Bowling LC, Buckney RT. Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers. Freshw Biol 2003;48(1):164-74. 链接1

[40] Liu FL, Jin F. Control effect of current velocity on alga growth in eutrophication water. Water Saving Irrigation 2009;9:52-4. Chinese. 链接1

[41] Dong K. Research on the impact of flow velocity on eutrophication in channel reservoir—study the growth of algae [dissertation]. Chongqing: Chongqing University; 2010. Chinese.

[42] Ministry of Environmental Protection of China (MEP). GB 3838-2002: Environmental quality standard for surface water. Chinese standard. Beijing: Standards Press of China; 2002.

相关研究