期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第5期 doi: 10.1016/j.eng.2018.09.001

过氧化氢作为环境胁迫指标在植被管理中的应用

Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan

收稿日期: 2017-12-11 修回日期: 2018-05-17 录用日期: 2018-09-03 发布日期: 2018-09-08

下一篇 上一篇

摘要

适应性植被管理非常耗时,其需要长时间的野外监测以获取可靠的数据。目前适应性植被管理手段虽已被广泛应用,但在进行栖息地状况评估时,仍然依赖于长时间的野外观测。目前的植被相关研究中,活性氧类(ROS)已经被视为一种环境胁迫指标。在这些ROS中,过氧化氢(H2O2)相对稳定,并且可以被准确、方便地量化。植物中H2O2含量可以被用作岸生和水生植被管理过程的胁迫指标,同时可以用来评估栖息地中单一植物物种的生长状况。本研究证明了植被管理中应用H2O2作为定量化环境胁迫指标的可行性。在实验室和野外(日本的真嗣湖、沙巴河、伊诺河和海河)条件下,分别开展了不同胁迫程度下大型水生植物和岸生植物生成H2O2情况的研究,结果表明H2O2可以作为环境管理中的胁迫指标。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 2006;141(2):391–6. 链接1

[ 2 ] Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012;2012:1–26. 链接1

[ 3 ] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002;7(9):405–10. 链接1

[ 4 ] Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 2011;155(1):93–100. 链接1

[ 5 ] Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 2012;35 (2):259–70. 链接1

[ 6 ] Ellawala C, Asaeda T, Kawamura K. Influence of flow turbulence on growth and indole acetic acid and H2O2 metabolism of three aquatic macrophyte species. Aquat Ecol 2011;45(3):417–26. 链接1

[ 7 ] Ellawala C, Asaeda T, Kawamura K. The effect of flow turbulence on growth, nutrient uptake and stable carbon and nitrogen isotope signatures in Chara fibrosa. Ann Limnol Int J Lim 2012;48(3):349–54. 链接1

[ 8 ] Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 1969;14(3):454–8. 链接1

[ 9 ] Napoli AM, Mason-Plunkett J, Valente J, Sucov A. Full recovery of two simultaneous cases of hydrogen sulfide toxicity. Hosp Physician 2006;42:47–50. 链接1

[10] Parveen M, Asaeda T, Rashid MH. Hydrogen sulfide induced growth, photosynthesis and biochemical responses in three submerged macrophytes. Flora 2017;230:1–11. 链接1

[11] Parveen M, Asaeda T, Rashid MH. Biochemical adaptations of four submerged macrophytes under combined exposure to hypoxia and hydrogen sulphide. PLoS One 2017;12(8):e0182691. 链接1

[12] Atapaththu KSS, Asaeda T, Yamamuro M, Kamiya H. Effects of water turbulence on plant, sediment and water quality in reed (Phragmites australis) community. Ekologia (Bratisl) 2017;36(1):1–9. 链接1

[13] River environmental database [Internet]. Tokyo: Ministry of Land, Infrastructure, Transportation and Tourism, Inc.; c2007 [updated 2018 May 24; cited 2017 Oct 8]. Available from: http://mizukoku.nilim.go.jp/ksnkankyo/ 03/index.htm.

[14] Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy BBABIO 1989;975:384–94. 链接1

[15] Jana S, Choudhuri MA. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot 1982;12:345–54. 链接1

[16] Gordon SA, Weber RP. Colorimetric estimation of inodoleacetic acid. Plant Physiol 1951;26(1):192–5. 链接1

[17] Chalanika De Silva HC, Asaeda T. Stress response and tolerance of the submerged macrophyte Elodea nuttallii (Planch.) St. John to heat stress: a comparative study of shock heat stress and gradual heat stress. Plant Biosyst 2018;152(4):787–94. 链接1

[18] Atapaththu KSS, Miyagi A, Atsuzawa K, Kaneko Y, Kawai-Yamada M, Asaeda T. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John. Plant Biol 2015;17(5):997–1004. 链接1

[19] Dooley FD, Nair SP, Ward PD. Increased growth and germination success in plants following hydrogen sulfide administration. PLoS One 2013;8(4):e62048. 链接1

[20] Hou Z, Wang L, Liu J, Hou L, Liu X. Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. J Integr Plant Biol 2013;55(3):277–89. 链接1

[21] Geurts JJM, Sarneel JM, Willers BJC, Roelofs JGM, Verhoeven JTA, Lamers LPM. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: a mesocosm experiment. Environ Pollut 2009;157(7):2072–81. 链接1

[22] Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 2013;36 (9):1607–16. 链接1

[23] Wu J, Cheng S, Liang W, He F, Wu Z. Effects of sediment anoxia and light on turion germination and early growth of Potamogeton crispus. Hydrobiologia 2009;628(1):111–9. 链接1

[24] King GM, Klug MJ, Wiegert RG, Chalmers A. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh. Science 1982;218(4567):61–3. 链接1

[25] Holmer M, Frederiksen MS, Møllegaard H. Sulfur accumulation in eelgrass (Zostera marina) and effect of sulfur on eelgrass growth. Aquat Bot 2005;81 (4):367–79. 链接1

[26] Cheeseman JM. Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 2007;1:4–15. 链接1

[27] Chalanika De Silva HC, Asaeda T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J Plant Interact 2017;12(1):228–36. 链接1

[28] Bunt J. Light and photosynthesis in aquatic ecosystems. Aquat Bot 1995;50 (1):111–2.

[29] Asaeda T, Siong K, Kawashima T, Sakamoto K. Growth of Phragmites japonica on a sandbar of regulated river: morphological adaptation of the plant to low water and nutrient availability in the substrate. River Res Appl 2009;25 (7):874–91. 链接1

[30] Sanjaya K, Asaeda T. Assessing the performance of a riparian vegetation model in a river with a low slope and fine sediment. Environ Technol 2017;38 (5):517–28. 链接1

[31] Asaeda T, Sanjaya K. The effect of the shortage of gravel sediment in midstream river channels on riparian vegetation cover. River Res Appl 2017;33(7):1107–18. 链接1

相关研究