期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第5期 doi: 10.1016/j.eng.2018.09.002

面向生态的水库群调度——以汉江中下游流域为例

a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
b State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
c Water Resources Department, Yangtze River Scientific Research Institute, Wuhan 430010, China

收稿日期: 2017-12-26 修回日期: 2018-04-26 录用日期: 2018-09-05 发布日期: 2018-09-12

下一篇 上一篇

摘要

水库群的建设和调度改变了河流的自然流态,对河流生态系统造成了不利影响。本文提出了一种面向生态的水库群调度策略,将河流内不同生态功能所需的生态流量整合到水库群联合调度中,以实现生态流量需求和人类用水需求之间的均衡。该策略耦合了常规优化调度方案和一系列实时生态调度方案。在人类用水需求与生态流量需求冲突较小的时段,水库群调度在保障河流最小流量的前提下采用常规优化调度方案,最大限度地提高人类用水效益。在水库引发的水文改变对河流关键生态功能产生严重影响的时期,水库群调度采用实时生态调度方案,调整下泄流量,从而满足河流生态流量需求。该策略被应用于位于中国汉江中下游流域的一个大型水库群中。模拟调度结果表明,实时生态调度方案保证了河流关键生态功能的生态流量需求,其对人类用水效益的不利影响可通过常规优化调度方案得到部分补偿。本文提出的面向生态的水库群调度策略丰富了考虑生态流量需求的水库群联合调度的理论应用。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Number of dams by country members [Internet]. Paris: ICOLD CIGB. [cited 2018 Apr 16]. Available from: http://www.icold-cigb.org/article/ GB/world_register/general_synthesis/number-of-dams-by-country-members.

[ 2 ] Labadie JW. Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manage 2004;130(2):93–111. 链接1

[ 3 ] Rani D, Moreira MM. Simulation–optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manage 2010;24(6):1107–38. 链接1

[ 4 ] Wang H, Lei X, Guo X, Jiang Y, Zhao T, Wang X. Multi-reservoir system operation theory and practice. In: Wang LK, Yang CT, Wang MHS, editors. Advances in water resources management. Handbook of environmental engineering. Cham: Springer; 2016. p. 1–110. 链接1

[ 5 ] Chang L, Chang F, Wang K, Dai S. Constrained genetic algorithms for optimizing multi-use reservoir operation. J Hydrol 2010;390(1–2):66–74. 链接1

[ 6 ] Bunn SE, Arthington AH. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 2002;30 (4):492–507. 链接1

[ 7 ] Petts GE. Instream flow science for sustainable river management. J Amer Water Resour Assoc 2009;45(5):1071–86. 链接1

[ 8 ] Wen X, Liu Z, Lei X, Lin R, Fang G, Tan Q, et al. Future changes in Yuan River ecohydrology: individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality. Sci Total Environ 2018;633:1403–17. 链接1

[ 9 ] King J, Brown C, Sabet H. A scenario-based holistic approach to environmental flow assessments for rivers. River Res Appl 2003;19(5–6):619–39. 链接1

[10] Jager HI, Smith BT. Sustainable reservoir operation: can we generate hydropower and preserve ecosystem values? River Res Appl 2008;24 (3):340–52. 链接1

[11] Poff NLR, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, et al. The natural flow regime. Bioscience 1997;47(11):769–84. 链接1

[12] Richter B, Thomas G. Restoring environmental flows by modifying dam operations. Ecol Soc 2007;12(1): art12. 链接1

[13] Yin X, Yang Z, Yang W, Zhao Y, Chen H. Optimized reservoir operation to balance human and riverine ecosystem needs: model development, and a case study for the Tanghe Reservoir, Tang River Basin, China. Hydrol Processes 2010;24(4):461–71. 链接1

[14] Steinschneider S, Bernstein A, Palmer R, Polebitski A. Reservoir management optimization for basin-wide ecological restoration in the Connecticut River. J Water Resour Plan Manage 2014;140(9):04014023. 链接1

[15] Lei X, Tan Q, Wang X, Wang H, Wen X, Wang C, et al. Stochastic optimal operation of reservoirs based on copula functions. J Hydrol 2018;557:265–75. 链接1

[16] Zhao T, Zhao J, Yang D, Wang H. Generalized martingale model of the uncertainty evolution of streamflow forecasts. Adv Water Resour 2013;57:41–51. 链接1

[17] Yin X, Yang Z, Petts GE. Reservoir operating rules to sustain environmental flows in regulated rivers. Water Resour Res 2011;47(8):W08509. 链接1

[18] Wang H, Brill ED, Ranjithan RS, Sankarasubramanian A. A framework for incorporating ecological releases in single reservoir operation. Adv Water Resour 2015;78:9–21. 链接1

[19] Wang Y, Zhang W, Zhao Y, Peng H, Shi Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the middle-lower Hanjiang River. J Hydrol 2016;541:1348–62. 链接1

[20] Wang Y, Wang D, Wu J. Assessing the impact of Danjiangkou Reservoir on ecohydrological conditions in Hanjiang River, China. Ecol Eng 2015;81:41–52. 链接1

[21] Xie W, Huang D, Xie S, Yang H, Yu F, Zhang X, et al. The early evolution of the four major Chinese carps resources in the middle and lower reaches of Hanjiang River after the construction and operation of Danjiangkou Reservoir. J Hydroecology 2009;2(02):44–9. Chinese. 链接1

[22] Gippel CJ, Stewardson MJ. Use of wetted perimeter in defining minimum environmental flows. Regul Rivers Res Manage 1998;14(1):53–67. 链接1

[23] Tennant DL. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1976;1(4):6–10. 链接1

[24] Yang Z, Zhang Y. Comparison of methods for ecological and environmental flow in river channels. J Hydrodynam 2003;18(3):294–301. Chinese.

[25] Wang X, Liu C, Yang Z. Method of resolving lowest environmental water demands in river course (I)—theory. Acta Scientiae Circumstantiae 2001;21 (5):544–7. Chinese.

[26] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97. 链接1

[27] Wang X, Lei X, Jiang Y, Wang H. Reservoir operation chart optimization searching in feasible region based on genetic algorithms. J Hydraul Eng 2013;44(01):26–34. Chinese. 链接1

相关研究