期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第5期 doi: 10.1016/j.eng.2018.09.005

利用机载激光雷达和近地表地球物理方法空间识别复杂低幅度第四纪硅质碎屑岩层——以美国得克萨斯滨海平原为例

Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA

收稿日期: 2017-11-11 修回日期: 2018-04-24 录用日期: 2018-09-07 发布日期: 2018-09-15

下一篇 上一篇

摘要

保存在全球滨海平原上的沉积单元控制着浅地层岩性分布,这对基础设施的设计和建设至关重要,同时也是许多第四纪冰期—间冰期循环中发生大规模气候变化的重要信息库。我们对这些沉积单元的横纵向岩性、地层复杂性及其对气候和海平面变化的响应知之甚少,因此很难预测岩性分布,以及将发展历史、未来气候和海平面变化置于同一自然地质环境中。传统上在低幅度滨海平原上描绘的第四纪硅质碎屑沉积单元建立在航拍图和低分辨率地形图的基础上。低幅度和低曝光率影响了观测的准确性和精确性。高分辨率机载激光雷达探测、地表地球物理勘探和地球物理测井正被用于识别得克萨斯州滨海平原上第四纪地层岩性单元的精确横纵向边界。地表和井中电导率测量能从泥质泛滥平原、三角洲平原和河道沉积中区分出砂质障壁岛、河流和三角洲河道沉积物。井中电导率和自然伽马测井记录同样可以区分地下不同的岩性单元,并识别出可能在不同冰期- 间冰期阶段分离的沉积单元的侵蚀不整合面。从机载激光雷达探测获得的高分辨率数字高程模型揭示了以前不为人知的地形细节,有助于识别地表特征,如砂质通道、富含黏土的河间沉积和更新世障壁岛上的堆积特征。在低幅度滨海平原环境中识别岩性和地层分布的最佳方法是:①首先使用激光雷达探测生成详细的高程模型;②基于激光雷达数据和航拍图的初步定位,选择性进行地表采样和地球物理探测;③在激光雷达和地表探测完成后,选择关键位置进行钻孔取样、测井和分析。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] McNeill JD. Electrical conductivity of soils and rocks, technical note TN-5. Mississauga: Geonics, Ltd.; 1980.

[ 2 ] Bureau of Economic Geology. Geology of Texas map. Austin: Bureau of Economic Geology, The University of Texas at Austin; 1992.

[ 3 ] Hayes CW, Kennedy W. Oil fields of the Texas–Louisiana Gulf Coastal Plain. Report. Washington, DC: US Government Printing Office; 1903.

[ 4 ] Sellards EH, Adkins WS, Plummer FB. The geology of Texas, volume I: stratigraphy. Austin: Bureau of Economic Geology, The University of Texas at Austin; 1932.

[ 5 ] Price WA. Lissie Formation and the Beaumont clay in south Texas. Am Assoc Pet Geol Bull 1934;18(7):948–59. 链接1

[ 6 ] Price WA. Sedimentology and quaternary geomorphology of south Texas. Am Assoc Pet Geol Bull 1958;8:41–75.

[ 7 ] Metcalf RJ. Deposition of Lissie and Beaumont formations of Gulf Coast of Texas. Am Assoc Pet Geol Bull 1940;24:693–700. 链接1

[ 8 ] Doering JA. Review of quaternary surface formations of Gulf Coast region. Am Assoc Pet Geol Bull 1956;40:1816–62. 链接1

[ 9 ] Aronow S. Nueces River delta plain of pleistocene Beaumont Formation, Corpus Christi region, Texas. Am Assoc Pet Geol Bull 1971;55:1231–48. 链接1

[10] Brewton JL, Brown LF Jr, McGowen JH. Geologic atlas of Texas, Corpus Christi sheet. Austin: Bureau of Economic Geology, The University of Texas at Austin; 1975.

[11] Brown LF Jr, Brewton JL, McGowen JH, Evans TJ, Fisher WL, Groat CG. Geologic atlas of Texas, Beeville-Bay City sheet. Austin: Bureau of Economic Geology, The University of Texas at Austin; 1987.

[12] Shackleton NJ, Opdyke ND. Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quat Res 1973;3(1):39–55. 链接1

[13] Shackleton NJ, Opdyke ND. Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28–239: late Pliocene to latest Pleistocene. Geol Soc Am 1976;145:449–64. 链接1

[14] Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, et al. The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. Milankovitch Clim 1984;126(1):269–305. 链接1

[15] Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevich YS, et al. A 150,000- year climatic record from Antarctic ice. Nature 1985;316(6029):591–6. 链接1

[16] Robin G. Contrasts in Vostok core—changes in climate or ice volume? Nature 1985;316:578–9.

[17] Lisiecki LE, Raymo ME. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 2005(20):PA1003. 链接1

[18] Paine JG, Caudle T, Andrews J, Averett A, Hupp J, Saylam K, et al. Shoreline movement in the Copano, San Antonio, and Matagorda Bay systems, central Texas coast, 1930s to 2010s. Final Report. Austin: Bureau of Economic Geology, The University of Texas at Austin; 2016. Contract No.: 13-258-000-7485.

[19] Parasnis DS. Principles of applied geophysics. 5th ed. New York: Chapman and Hall; 1986. 链接1

[20] Frischknecht FC, Labson VF, Spies BR, Anderson WL. Profiling using small sources. In: Nabighian MN, editor. Electromagnetic methods in applied geophysics-applications, part A and part B. Tulsa: Society of Exploration Geophysicists; 1991. p. 105–270.

[21] West GF, Macnae JC. Physics of the electromagnetic induction exploration method. In: Nabighian MN, editor. Electromagnetic methods in applied geophysics-applications, part A and part B. Tulsa: Society of Exploration Geophysicists; 1991. p. 5–45. 链接1

[22] McNeill JD. Electromagnetic terrain conductivity measurement at low induction numbers. Report. Mississauga: Geonics, Ltd.; 1980. 链接1

[23] Kaufman A, Keller GV. Frequency and transient soundings. In: Kaufman AA, editor. Methods in geochemistry and geophysics. Amsterdam: Elsevier; 1983. p. 685.

[24] Spies R, Frischknecht FC. Electromagnetic sounding. In: Nabighian MN, editor. Electromagnetic methods in applied geophysics-applications, part A and part B. Tulsa: Society of Exploration Geophysicists; 1991. p. 285–386.

[25] Paine JG, Goldsmith RS, Scanlon BR. Electrical conductivity and gamma-ray response to clay, water, and chloride content in fissured sediments, Trans- Pecos Texas. Environ Eng Geosci 1998;4(2):225–39. 链接1

[26] Paine JG, Collins EW. Geologic map of the Bayside quadrangle: Aransas Delta and Copano Bay area, Texas Gulf of Mexico Coast. Austin: Bureau of Economic Geology, The University of Texas at Austin; 2014.

[27] Paine JG, Collins EW. Geologic map of the Mission Bay quadrangle: Mission Delta and Copano Bay area. Austin: Bureau of Economic Geology, The University of Texas at Austin; 2014.

[28] Paine JG. Subsidence of the Texas coast: inferences from historical and late Pleistocene sea levels. Tectonophysics 1993;222(3–4):445–58. 链接1

[29] Otvos EG, Howat WE. South Texas Ingleside barrier; coastal sediment cycles and vertebrate fauna; late Pleistocene stratigraphy revised. GCAGS Transa 1996;46:333–44. 链接1

[30] Otvos EG. Numerical chronology of Pleistocene coastal plain and valley development; extensive aggradation during glacial low sea-levels. Quat Int 2005;135(1):91–113. 链接1

[31] Simms R, Anderson JB, DeWitt R, Lambeck K, Purcell A. Quantifying rates of coastal subsidence since the last interglacial and the role of sediment loading. Global Planet Change 2013;111:296–308. 链接1

相关研究