期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2018.09.009

面向生物医学临床应用的激光微加工功能表面

a School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China

b Hefei Innovation Research Institute, Beihang University, Hefei 230013, China

c Department of Oncology, Center of Excellence, BOE Hefei Digital Hospital Co., Ltd., Hefei 230013, China

d Beijing Long March Space Vehicle Research Institute, First Academy of the China Aerospace Corporation, Beijing 100076, China

e National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China

# These authors contributed equally to this work

收稿日期: 2018-04-25 修回日期: 2018-06-12 录用日期: 2018-09-18 发布日期: 2018-09-25

下一篇 上一篇

摘要

金属医用材料以其高强度、强抗断性、优良的导电性和良好的生物相容性等特点,在医疗器械中日益得到广泛应用。但金属医用材料表面生物性能的不足在很大程度上限制了其进一步的应用。激光微加工是一种增强材料表面性能的先进技术,本文系统验证、展示激光微加工医用金属生物材料镁合金和钛合金的可行性,阐述其在细胞黏附和液体活检的应用前景。本文研究激光与材料的相互作用、材料微结构演化和表面性能,分析相关细胞行为和表面增强拉曼散射效应。实验结果表明,细胞在激光微加工表面黏附性能好,并可沿预先设计结构方向生长。此外,激光功能表面可显著增强拉曼信号,增强因子可达6×103 以上。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Pan F, Gao S, Chen C, Song C, Zeng F. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng Rep 2014;83:1–59. 链接1

[ 2 ] Xiong Y, Li H, Wang P, Liu P, Yan Y. Improved cell adhesion of poly(amino acid) surface by cyclic phosphonate modification for bone tissue engineering. J Appl Polym Sci 2018;135(21):46226. 链接1

[ 3 ] Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering 2017;3(1):16–27. 链接1

[ 4 ] Guan Y, Zhou W, Zheng H. Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid. J Appl Electrochem 2009;39(9):1457–64. 链接1

[ 5 ] Korhonen E, Riikonen J, Xu W, Lehto V, Kauppinen A. Cytotoxicity of mesoporous silicon microparticles with different surface modifications on ARPE-19 cells. Acta Ophthalmol 2014;92(S253):3257. 链接1

[ 6 ] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26 (18):3995–4021. 链接1

[ 7 ] Lo Celso C. Revealing the inner workings of human HSC adhesion. Blood 2017;129(8):921–2. 链接1

[ 8 ] Diener A, Nebe B, Lüthen F, Becker P, Beck U, Neumann HG, et al. Control of focal adhesion dynamics by material surface characteristics. Biomaterials 2005;26(4):383–92. 链接1

[ 9 ] Won JE, Yun YR, Jang JH, Yang SH, Kim JH, Chrzanowski W, et al. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Biomaterials 2015;56:46–57. 链接1

[10] Lee JY, Shah SS, Zimmer CC, Liu GY, Revzin A. Use of photolithography to encode cell adhesive domains into protein microarrays. Langmuir 2008;24 (5):2232–9. 链接1

[11] Javaherian S, O’Donnell KA, McGuigan AP. A fast and accessible methodology for micro-patterning cells on standard culture substrates using ParafilmTM inserts. PLoS One 2011;6(6):e20909. 链接1

[12] Ross AM, Jiang Z, Bastmeyer M, Lahann J. Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 2012;8(3):336–55. 链接1

[13] Martínez-Calderon M, Manso-Silván M, Rodríguez A, Gómez-Aranzadi M, García-Ruiz JP, Olaizola SM, et al. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci Rep 2016;6:36296. 链接1

[14] Cunha A, Zouani OF, Plawinski L, Botelho do Rego AM, Almeida A, Vilar R, et al. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti6Al-4V surfaces. Nanomedicine 2015;10(5):725–39. 链接1

[15] Dumas V, Guignandon A, Vico L, Mauclair C, Zapata X, Linossier MT, et al. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed Mater 2015;10(5):055002. 链接1

[16] Manakari V, Parande G, Gupta M. Selective laser melting of magnesium and magnesium alloy powders: a review. Metals (Basel) 2017;7(1):2. 链接1

[17] Willbold E, Weizbauer A, Loos A, Seitz JM, Angrisani N, Windhagen H, et al. Magnesium alloys: a stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations. J Biomed Mater Res A 2017;105(1):329–47. 链接1

[18] Guan YC, Zhou W, Li ZL, Zheng HY. Laser-induced microstructural development and phase evolution in magnesium alloy. J Alloys Compd 2014;582:491–5. 链接1

[19] Guan YC, Zhou W, Li ZL, Zheng HY. Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy. Mater Design 2013;52:452–8. 链接1

[20] Coy AE, Viejo F, Garcia-Garcia FJ, Liu Z, Skeldon P, Thompson GE. Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy. Corros Sci 2010;52 (2):387–97. 链接1

[21] Voelker R. Liquid biopsy receives approval. JAMA 2016;316(3):260. 链接1

[22] De Lázaro I, Kostarelos K. Optical diagnostics: nanosensors for liquid biopsies. Nat Biomed Eng 2017;1:0063. 链接1

[23] Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014;32(6):579–86. 链接1

[24] Schrump DS. Circulating tumor DNA: solid data from liquid biopsies. J Thorac Cardiovasc Surg 2017;154(3):1132–3. 链接1

[25] Xu K, Zhang C, Zhou R, Ji R, Hong M. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering.Opt Express 2016;24(10):10352–8. 链接1

[26] Zhu Z, Yan Z, Zhan P, Wang Z. Large-area surface-enhanced Raman scatteringactive substrates fabricated by femtosecond laser ablation. Sci China Phys Mech Astron 2013;56(9):1806–9. 链接1

[27] Parmar V, Kanaujia PK, Bommali RK, Vijaya Prakash G. Efficient surface enhanced Raman scattering substrates from femtosecond laser based fabrication. Opt Mater 2017;72:86–90. 链接1

[28] Buividas R, Stoddart PR, Juodkazis S. Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann Phys 2012;524(11):L5–L10. 链接1

[29] Rebollar E, Sanz M, Pérez S, Hernández M, Martín-Fabiani I, Rueda DR, et al. Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys Chem Chem Phys 2012;14(45):15699–705. 链接1

[30] Jang Y, Tan Z, Jurey C, Collins B, Badve A, Dong Z, et al. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant. Mater Sci Eng C 2014;45:45–55. 链接1

[31] Ma C, Peng G, Nie L, Liu H, Guan Y. Laser surface modification of Mg–Gd–Ca alloy for corrosion resistance and biocompatibility enhancement. Appl Surf Sci 2018;445:211–6. 链接1

[32] Xiao B, Yang Q, Yang J, Wang W, Xie G, Ma Z. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. J Alloys Compd 2011;509 (6):2879–84. 链接1

[33] Zhang X, Dai J, Yang H, Liu S, He X, Wang Z. Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg–Gd–Zn(–Ca) alloys. Mater Technol 2017;32(7):399–408. 链接1

[34] Liu Y, Kang Z, Zhou L, Zhang J, Li Y. Mechanical properties and biocorrosion behaviour of deformed Mg–Gd–Nd–Zn–Zr alloy by equal channel angular pressing. Corros Eng Sci Technol 2016;51(4):256–62. 链接1

[35] Xin Y, Huo K, Tao H, Tang G, Chu P. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater 2008;4(6):2008–15. 链接1

[36] Taltavull C, Shi Z, Torres B, Rams J, Atrens A. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’s solution. J Mater Sci Mater Med 2014;25(2):329–45. 链接1

[37] Aghion EE, Arnon A, Atar D, Segal G, inventors; Biomagnesium Systems Ltd., assignee. Biodegradable magnesium alloys and uses thereof. WIPO Patent patent WO/2007/125532. 2007 Nov 8. 链接1

[38] Zheng Y, Gu X, Xi Y, Chai D. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater 2010;6(5):1783–91. 链接1

[39] Mannion PT, Magee J, Coyne E, O’Connor GM, Glynn TJ. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci 2004;233(1–4):275–87. 链接1

[40] Villa JEL, Santos DP, Poppi RJ. Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Mikrochim Acta 2016;183(10):2745–52. 链接1

[41] Harraz FA, Ismail AA, Bouzid H, Al-Sayari SA, Al-Hajry A, Al-Assiri MS. Surfaceenhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl Surf Sci 2015;331:241–7. 链接1

[42] Domingo C, Resta V, Sanchez-Cortes S, García-Ramos JV, Gonzalo J. Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy. J Phys Chem C 2007;111(23):8149–52. 链接1

[43] Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 2008;1(1):601–26. 链接1

[44] Bauch M, Toma K, Toma M, Zhang Q, Dostalek J. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 2014;9(4):781–99. 链接1

[45] Caldarola M, Albella P, Cortés E, Rahmani M, Roschuk T, Grinblat G, et al. Nonplasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat Commun 2015;6(1):7915. 链接1

[46] Kelly KL, Coronado E, Zhao L, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107(3):668–77. 链接1

[47] Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst 2015;140(2):386–406. 链接1

[48] Dong J, Zhang Z, Zheng H, Sun M. Recent progress on plasmon-enhanced fluorescence. Nanophotonics 2015;4(1):472–90. 链接1

[49] Homola J, Piliarik M. Surface plasmon resonance (SPR) sensors. Surface plasmon resonance based sensors. Springer, Berlin Heidelberg 2006;4:45–67. 链接1

相关研究