期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2018.09.011

面向CPG驱动的仿生机器鱼容错控制方法

a State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China

b University of the Chinese Academy of Sciences, Beijing 100049, China

收稿日期: 2018-02-07 修回日期: 2018-06-04 录用日期: 2018-09-20 发布日期: 2018-09-27

下一篇 上一篇

摘要

容错性能对于自推进仿生机器鱼在实际水下应用中的可操作性和生存能力至关重要。本文探讨了具有多个可活动关节和一个被卡住尾部关节的自由游动机器鱼的容错控制问题。提出的控制系统主要由两个部分组成:反馈控制器和前馈补偿器。具体而言,一方面,设计了基于生物启发中心模式发生器的反馈控制器用于使机器鱼对外部干扰具有鲁棒性;另一方面,引入了基于动力学模型的前馈补偿器来加速整个控制系统的收敛。在此基础上,开展了仿真实验来完成控制系统分析和故障机器鱼游动性能验证。最后,水下实验表明,所提出的容错控制方法能够有效调整故障机器鱼,使其能够在故障情况下完成所需运动,进而提高实际机器鱼系统的稳定性和寿命。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Luo Z, Shang J, Zhang Z. Innovative design of six wheeled space exploration robot using module combination. In: Proceedings of the 19th International Conference on Mechatronics and Machine Vision in Practice; 2012 Nov 28–30; Auckland, New Zealand. New York: IEEE; 2012. p. 460–5. 链接1

[ 2 ] Chen S, Yu J, Li X, Yuan J. Design and implementation of a smart robotic shark with multi-sensors. In: Proceedings of the 18th International Conference on CLAWAR 2015; 2015 Sep 6–9; Hangzhou, China; 2015. p. 199–206. 链接1

[ 3 ] Abbaspour R. Design and implementation of multi-sensor based autonomous minesweeping robot. In: Proceedings of 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops; 2010 Oct 18–20; Moscow, Russia. New York: IEEE; 2010. p. 443–9. 链接1

[ 4 ] Koh M, Norton M, Khoo S. Robust fault-tolerant leader-follower control of fourwheel steering mobile robots using terminal sliding mode. Austra J Electri Electro Eng 2012;9(3):247–53. 链接1

[ 5 ] Suzuki H, Asano M, Hamaya A, Onozawa T. Space demonstration of a fault tolerant computer system using commercial MPU. Space Technol 2004;24 (1):35–41. 链接1

[ 6 ] Wang J, Cao J, Jiang S. Fault-tolerant pattern formation by multiple robots: a learning approach. In: Proceedings of 2017 IEEE 36th Symposium on Reliable Distributed Systems; 2017 Sep 26–29; Hong Kong, China. New York: IEEE; 2017. p. 268–9. 链接1

[ 7 ] Mi Y, Xu F, Tan J, Wang X, Liang B. Fault-tolerant control of a 2-DOF robot manipulator using multi-sensor switching strategy. In: Proceedings of the 36th Chinese Control Conference; 2010 Oct 18–20; Dalian, China. New York: IEEE; 2017. p. 7307–14. 链接1

[ 8 ] Ben-Gharbia KM, Maciejewski AA, Roberts RG. A kinematic analysis and evaluation of planar robots designed from optimally fault-tolerant Jacobians. IEEE Trans Robot 2014;30(2):516–24. 链接1

[ 9 ] Kawata T, Kamiyama K, Kojima M, Horade M, Mae Y. Fault-tolerant adaptive gait generation for multi-limbed robot. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2016 Oct 9–14; Daejeon, Korea. New York: IEEE; 2016. p. 3381–6. 链接1

[10] Mavrovouniotis M, Van M, Ge SS. An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cybern Syst 2018 Jan 17:1–11. 链接1

[11] Zhang Y, Zeng J, Li Y, Sun Y. Research on reconstructive fault-tolerant control of an X-rudder AUV. In: Proceedings of the OCEANS 2016 MTS/IEEE; 2016 Sep 19–23; Monterey, CA, USA. New York: IEEE; 2016. p. 1–5. 链接1

[12] Triantafyllou MS, Triantafyllou GS. An efficient swimming machine. Sci Am 1995;272(3):64–70. 链接1

[13] Yu J, Chen S, Wu Z, Wang W. On a miniature free-swimming robotic fish with multiple sensors. Int J Adv Robot Syst 2016;13:62. 链接1

[14] Yu J, Su Z, Wang M, Tan M, Zhang J. Control of yaw and pitch maneuvers of a multilink dolphin robot. IEEE Trans Robot 2012;28(2):318–29. 链接1

[15] Yu J, Tan M, Wang S, Chen E. Development of a biomimetic robotic fish and its control algorithm. IEEE Trans Syst Man Cybern B Cybern 2004;34(4):1798–810. 链接1

[16] Liang J, Wang T, Wen L. Development of a two-joint robotic fish for real-world exploration. J Field Robot 2011;28(1):70–9. 链接1

[17] Zhou C, Low KH. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans Mechatron 2012;17(1): 25–35. 链接1

[18] Wang M, Yu J, Tan M. CPG-based sensory feedback control for bio-inspired multimodal swimming. Int J Adv Robot Syst 2014;11(10):70. 链接1

[19] Chen S, Yu J, Li X, Yuan J. Design and implementation of a smart robotic shark with multi-sensors. In: Proceedings of the 18th International Conference on CLAWAR 2015; 2015 Sep 6–9; Hangzhou, China; 2015. p. 199–206. 链接1

[20] Zhong Y, Li Z, Du R. A novel robot fish with wire-driven active body and compliant tail. IEEE/ASME Trans Mechatron 2017;22(4):1633–43. 链接1

[21] Romero P, Sensale-Rodriguez B, Astessiano D, Canetti R. Fisho: a cost-effective intelligent autonomous robot fish. In: Proceedings of 2013 16th International Conference on Advanced Robotics; 2013 Nov 25–29; Montevideo, Uruguay. New York: IEEE; 2014. p. 1–6. 链接1

[22] Yu J, Wang L, Shao J, Tan M. Control and coordination of multiple biomimetic robotic fish. IEEE Trans Contr Syst Technol 2007;15(1):176–83. 链接1

[23] Zhou C. Research on modeling, control and cooperation of a marsupial biomimetic robotic fish [dissertation]. Beijing: Institute of Automation, Chinese Academy of Sciences; 2008. Chinese.

[24] Liang X, Zhang J, Li W. Sensor fault tolerant control for AUVs based on replace control. Sensors Transducers 2013;158(11):408–13.

[25] Ahmadzadeh SR, Leonetti M, Carrera A, Carreras M, Kormushev P, Caldwell DG. Online discovery of AUV control policies to overcome thruster failures. In:Proceedings of IEEE International Conference on Robotics and Automation; 2014 May 31–June 7; Hong Kong, China. New York: IEEE; 2014. p. 6522–8. 链接1

[26] Rauber JG, Santos CHFD, Chiella ACB, Motta LRH. A strategy for thruster faulttolerant control applied to an AUV. In: Proceedings of 2012 17th International Conference on Methods and Models in Automation and Robotics; 2012 Aug 27–30; Miedzyzdrojie, Poland. New York: IEEE; 2012. p. 184–9. 链接1

[27] Su Z, Yu J, Tan M, Zhang J. Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans Mechatron 2014;19(1):329–38. 链接1

[28] Yu J, Tan M, Chen J, Zhang J. A survey on CPG-inspired control models and system implementation. IEEE Trans Neural Netw Learn Syst 2014;25 (3):441–56. 链接1

[29] Liu C, Wang D, Chen Q. Central pattern generator inspired control for adaptive walking of biped robots. IEEE Trans Syst Man Cybern Syst 2013;43 (5):1206–15. 链接1

[30] Yu J, Yuan J, Wu Z, Tan M. Data-driven dynamic modeling for a swimming robotic fish. IEEE Trans Ind Electron 2016;63(9):5632–40. 链接1

[31] Wu Z, Yu J, Su Z, Tan M, Li Z. Towards an Esox lucius inspired multimodal robotic fish. Sci China Inf Sci 2015;58(5):052203. 链接1

[32] Wu Z. Three-dimensional maneuvering locomotion and gliding control for the robotic fish [dissertation]. Beijing: University of Chinese Academy of Sciences; 2015. Chinese.

[33] Yu J, Wu Z, Wang M, Tan M. CPG network optimization for a biomimetic robotic fish via PSO. IEEE Trans Neural Netw Learn Syst 2016;27(9):1962–8. 链接1

[34] Yuan J, Yu J, Wu Z, Tan M. Precise planar motion measurement of a swimming multi-joint robotic fish. Sci China Inf Sci 2016;59(9):092208. 链接1

相关研究