期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2018.10.002

双光梳测距

a State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China

b Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

收稿日期: 2018-04-20 修回日期: 2018-06-20 录用日期: 2018-10-19 发布日期: 2018-10-26

下一篇 上一篇

摘要

绝对距离测量技术是动态和大范围空间测量的核心。新兴的双光梳测距系统可以利用其相位分辨能力和频率准确性实现高精度及快速距离测量。利用两台相干的光频梳,双光梳测距系统能够实现时间信息和相位信息的快速响应,突破了传统测距系统中的响应带宽、非模糊距离、动态测量等方面的限制。本文介绍了双光梳测距系统,总结归纳了实现该测距系统的关键技术。随着光频梳技术的发展和成熟,双光梳测距系统将有希望展开各种专业应用。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Cuypers W, Van Gestel N, Voet A, Kruth JP, Mingneau J, Bleys P. Optical measurement techniques for mobile and large-scale dimensional metrology. Opt Lasers Eng 2009;47(3–4):292–300. 链接1

[ 2 ] Schmitt RH, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, et al. Advances in large-scale metrology-review and future trends. Cirp Ann-Manuf Techn 2016;65(2):643–65. 链接1

[ 3 ] Bobroff N. Recent advances in displacement measuring interferometry. Meas Sci Technol 1993;4(9):907–26. 链接1

[ 4 ] Abbott BP. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 2016;116:061102. 链接1

[ 5 ] Newbury NR. Searching for applications with a fine-tooth comb. Nat Photon 2011;5(4):186–8. 链接1

[ 6 ] Udem T, Holzwarth R, Hansch TW. Optical frequency metrology. Nature 2002;416(6877):233–7. 链接1

[ 7 ] Jang YS, Kim SW. Distance measurements using mode-locked lasers: a review. Nanomanu Metrol 2018;1(3):131–47. 链接1

[ 8 ] Lee J, Kim YJ, Lee K, Lee S, Kim SW. Time-of-flight measurement with femtosecond light pulses. Nat Photon 2010;4(10):716–20. 链接1

[ 9 ] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl Opt 2000;39 (30):5512–7. 链接1

[10] Doloca NR, Meiners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A. Absolute distance measurement system using a femtosecond laser as a modulator. Meas Sci Technol 2010;21(11):115302. 链接1

[11] Wu G, Takahashi M, Inaba H, Minoshima K. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Opt Lett 2013;38(12):2140–3. 链接1

[12] Wang G, Jang YS, Hyun S, Chun BJ, Kang HJ, Yan S, et al. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt Express 2015;23(7):9121–9. 链接1

[13] Jang YS, Wang G, Hyun S, Kang HJ, Chun BJ, Kim YJ, et al. Comb-referenced laser distance interferometer for industrial nanotechnology. Sci Rep 2016;6(1):31770. 链接1

[14] Joo KN, Kim SW. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt Express 2006;14(13):5954–60. 链接1

[15] Joo KN, Kim Y, Kim SW. Distance measurements by combined method based on a femtosecond pulse laser. Opt Express 2008;16(24):19799–806. 链接1

[16] Van den Berg SA, Persijn ST, Kok GJP, Zeitouny MG, Bhattacharya N. Manywavelength interferometry with thousands of lasers for absolute distance measurement. Phys Rev Lett 2012;108(18):183901. 链接1

[17] Coddington I, Swann WC, Nenadovic L, Newbury NR. Rapid and precise absolute distance measurements at long range. Nat Photonics 2009;3(6):351–6. 链接1

[18] Zhu Z, Xu G, Ni K, Zhou Q, Wu G. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement. Opt Express 2018;26(5):5747–57. 链接1

[19] Wu G, Zhou Q, Shen L, Ni K, Zeng X, Li Y. Experimental optimization of the repetition rate difference in dual-comb ranging system. Appl Phys Express 2014;7(10):106602. 链接1

[20] Li Y, Shi J, Wang Y, Ji R, Liu D, Zhou W. Phase distortion correction in dualcomb ranging system. Meas Sci Technol 2017;28(7):075201. 链接1

[21] Lee J, Han S, Lee K, Bae E, Kim S, Lee S, et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas Sci Technol 2013;24(4):045201. 链接1

[22] Wu G, Xiong S, Ni K, Zhu Z, Zhou Q. Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt Express 2015;23 (25):32044–53. 链接1

[23] Shi H, Song Y, Liang F, Xu L, Hu M, Wang C. Effect of timing jitter on time-offlight distance measurements using dual femtosecond lasers. Opt Express 2015;23(11):14057–69. 链接1

[24] Zhang H, Wei H, Wu X, Yang H, Li Y. Absolute distance measurement by dualcomb nonlinear asynchronous optical sampling. Opt Express 2014;22(6): 6597–604. 链接1

[25] Zhang H, Wei H, Wu X, Yang H, Li Y. Reliable non-ambiguity range extension with dual-comb simultaneous operation in absolute distance measurements. Meas Sci Technol 2014;25(12):125201. 链接1

[26] Zhao X, Zheng Z, Liu L, Wang Q, Chen H, Liu J. Fast, long-scan-range pumpprobe measurement based on asynchronous sampling using a dualwavelength mode-locked fiber laser. Opt Express 2012;20(23):25584–9. 链接1

[27] Liu TA, Newbury NR, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers. Opt Express 2011;19(19):18501–9. 链接1

[28] Zhang H, Wu X, Wei H, Li Y. Compact dual-comb absolute distance ranging with an electric reference. IEEE Photon J 2015;7:1–8. 链接1

[29] Yang R, Pollinger F, Meiners-Hagen K, Krystek M, Tan J, Bosse H. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection. Meas Sci Technol 2015;26(8):084001. 链接1

[30] Trocha P, Karpov M, Ganin D, Pfeiffer MHP, Kordts A, Wolf S, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 2018;359(6378):887–91. 链接1

[31] Weimann C, Lauermann M, Hoeller F, Freude W, Koos C. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology. Opt Express 2017;25(24):30091–104. 链接1

[32] Teleanu EL, Duran V, Torres-Company V. Electro-optic dual-comb interferometerfor high-speedvibrometry. OptExpress 2017;25(14):16427–36. 链接1

[33] Wu H, Zhao T, Wang Z, Zhang K, Xue B, Li J, et al. Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry. Appl Phys Lett 2017;111(25):251901. 链接1

[34] Zhao X, Qu X, Zhang F, Zhao Y, Tang G. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb. Opt Lett 2018;43(4):807–10. 链接1

[35] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica 2016;3(4):414–26 链接1

[36] Ideguchi T. Dual-comb spectroscopy. Opt Photon News 2017;28(1):32–9.

[37] Coddington I, Swann WC, Newbury NR. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys Rev A 2010;82(4):3535–7. 链接1

[38] Coddington I, Swann WC, Newbury NR. Time-domain spectroscopy of molecular free-induction decay in the infrared. Opt Lett 2010;35(9):1395–7. 链接1

[39] Cossel KC, Waxman EM, Giorgetta FR, Cermak M, Coddington IR, Hesselius D, et al. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica 2017;4(7):724–8. 链接1

[40] Link SM, Maas DJHC, Waldburger D, Keller U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 2017;356 (6343):1164–8. 链接1

[41] Baumann E, Giorgetta FR, Swann WC, Zolot AM, Coddington I, Newbury NR. Spectroscopy of the methane Nu(3) band with an accurate midinfrared coherent dual-comb spectrometer. Phys Rev A 2011;84(6):14717–9. 链接1

[42] Coddington I, Swann WC, Newbury NR. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys Rev Lett 2008;100(1):13902–5 链接1

[43] Davila-Rodriguez J, Ozawa A, Hansch TW, Udem T. Doppler cooling trapped ions with a UV frequency comb. Phys Rev Lett 2016;116(4):043002. 链接1

[44] Meek SA, Hipke A, Guelachvili G, Hänsch TW, Picqué N. Doppler-free fourier transform spectroscopy. Opt Lett 2017;43(1):162–5. 链接1

[45] Hsieh YD, Iyonaga Y, Sakaguchi Y, Yokoyama S, Inaba H, Minoshima K, et al. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs. Sci Rep 2014;4:3816. 链接1

[46] Nishiyama A, Yoshida S, Nakajima Y, Sasada H, Nakagawa K, Onae A, et al. Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique. Opt Express 2016;24(22):25894–904. 链接1

[47] Roy J, Deschenes JD, Potvin S, Genest J. Continuous real-time correction and averaging for frequency comb interferometry. Opt Express 2012;20(20): 21932–9. 链接1

[48] Ideguchi T, Poisson A, Guelachvili G, Picque N, Hansch TW. Adaptive real-time dual-comb spectroscopy. Nat Commun 2014;5(1):3375–82. 链接1

[49] Ycas G, Giorgetta FR, Baumann E, Coddington I, Herman D, Diddams SA, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 lm. Nat Photon 2018;12(4):202–8. 链接1

[50] Coddington I, Swann WC, Newbury NR. Coherent linear optical sampling at 15 bits of resolution. Opt Lett 2009;34(14):2153–5. 链接1

[51] Minamikawa T, Hsieh YD, Shibuya K, Hase E, Kaneoka Y, Okubo S, et al. Dualcomb spectroscopic ellipsometry. Nat Commun 2017;8(1):610–7. 链接1

[52] Asahara A, Nishiyama A, Yoshida S, Kondo K, Nakajima Y, Minoshima K. Dualcomb spectroscopy for rapid characterization of complex optical properties of solids. Opt Lett 2016;41(21):4971–4. 链接1

[53] Boudreau S, Levasseur S, Perilla C, Roy S, Genest J. Chemical detection with hyperspectral lidar using dual frequency combs. Opt Express 2013;21(6): 7411–8. 链接1

[54] Shibuya K, Minamikawa T, Mizutani Y, Yamamoto H, Minoshima K, Yasui T, et al. Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase. Opt Express 2017;25(18):21947–57. 链接1

[55] Wang C, Deng Z, Gu C, Liu Y, Luo D, Zhu Z, et al. Line-scan spectrum-encoded imaging by dual-comb interferometry. Opt Lett 2018;43(7):1606–9. 链接1

[56] Hase E, Minamikawa T, Mizuno T, Miyamoto S, Ichikawa R, Hsieh YD, et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica 2018;5(5):634–43. 链接1

[57] Dong X, Zhou X, Kang J, Chen L, Lei Z, Zhang C, et al. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Opt Lett 2018;43(9):2118–21. 链接1

[58] Kuse N, Ozawa A, Kobayashi Y. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy. Opt Express 2013;21(9):11141–9. 链接1

[59] Burghoff D, Yang Y, Hu Q. Computational multiheterodyne spectroscopy. Sci Adv 2016;2(11):1601227–33. 链接1

[60] Zhu Z, Ni K, Zhou Q, Wu G. Digital correction method for realizing a phasestable dual-comb interferometer. Opt Express 2018;26(13):16813–23. 链接1

[61] Deschenes JD, Giaccari P, Genest J. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. Opt Express 2010;18(22):23358–70. 链接1

[62] Zhu Z, Xu G, Ni K, Zhou Q, Wu G. Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth. Meas Sci Technol 2018;29(4):45007–11 链接1

[63] Chen Z, Yan M, Hänsch TW, Picqué N. A phase-stable dual-comb interferometer. Nat Commun 2018;9:3035. 链接1

[64] Zhu Z, Ni K, Zhou Q, Wu G. A computational correction method for dual-comb interferometry. In: Proceedings of Conference on Lasers and Electro-Optics; 2018 May 13–18; San Jose, CA, USA. California: Optical Society of America; 2018. 链接1

[65] Zhang Z, Gu C, Sun J, Wang C, Gardiner T, Reid DT. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. Opt Lett 2012;37(2):187–9. 链接1

[66] Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv Opt Photonics 2016;8(3):465. 链接1

[67] Ferre-Pikal ES, Vig JR, Camparo JC, Cutler LS, Maleki L, Riley WJ, et al. Draft revision of IEEE STD 1139–1988 standard definitions of physical quantities for fundamental, frequency and time metrology-random instabilities. In: Proceedings of International Frequency Control Symposium; 1997 May 30; Orlando, FL, USA. New York: IEEE; 2002. p. 338–57. 链接1

[68] Paschotta R. Noise of mode-locked lasers (part I): numerical model. Appl Phys B 2004;79(2):153–62. 链接1

[69] Von Bandel N, Myara M, Sellahi M, Souici T, Dardaillon R, Signoret P. Timedependent laser linewidth: beat-note digital acquisition and numerical analysis. Opt Express 2016;24(24):27961–78. 链接1

[70] Hou D, Lee CC, Yang Z, Schibli TR. Timing jitter characterization of modelocked lasers with <1 zs/pHz resolution using a simple optical heterodyne technique. Opt Lett 2015;40(13):2985–8. 链接1

[71] Ideguchi T, Nakamura T, Kobayashi Y, Goda K. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica 2016;3(7):748–53. 链接1

[72] Liao R, Song Y, Liu W, Shi H, Chai L, Hu M. Dual-comb spectroscopy with a single free-running thulium-doped fiber laser. Opt Express 2018;26(8): 11046–54. 链接1

[73] Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hänsch TW, et al. Frequency-agile dual-comb spectroscopy. Nat Photon 2016;10(1):27–30.

[74] Ideguchi T, Poisson A, Guelachvili G, Haensch TW, Picque N. Adaptive dualcomb spectroscopy in the green region. Opt Lett 2012;37(23):4847–9. 链接1

[75] Hebert NB, Genest J, Deschênes JD, Bergeron H, Chen GY, Khurmi C, et al. Selfcorrected chip-based dual-comb spectrometer. Opt Express 2017;25(7): 8168–79. 链接1

[76] Newbury NR, Coddington I, Swann W. Sensitivity of coherent dual-comb spectroscopy. Opt Express 2010;18(8):7929–45.

[77] Jang YS, Kim SW. Compensation of the refractive index of air in laser interferometer for distance measurement: a review. Int J Precis Eng Manuf 2017;18(12):1881–90. 链接1

相关研究