期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2018.10.004

超短脉冲激光制造及表面加工微米器件

a Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA

b Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China

c College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China

收稿日期: 2018-04-28 修回日期: 2018-08-21 录用日期: 2018-10-25 发布日期: 2018-11-01

下一篇 上一篇

摘要

超短脉冲激光在材料加工方面具有独特的优势。其对焦点之外区域的热影响效应非常有限,使超短脉冲激光可被应用于微米甚至纳米尺寸的精密加工。另外,非线性多光子效应使超短脉冲激光可以加工多种透明材料,包括玻璃以及透明高分子材料。基于这些特点,我们利用激光直写技术在高分子衬底上成功制造出了具有三维(3D)结构的高性能微型超级电容器(MSC),在0.1 mA·cm–2的电流密度下表现出42.6 mF·cm–2的峰值比电容。同时,也制造出了可用于探测多种“味道”的柔性传感器阵列。对传感器电极表面进行了不同的处理,如镀金、沉降氧化石墨烯(rGO)以及沉积聚苯胺(PANI)。通过对采集的数据进行主成分分析(PCA),这一传感器阵列可以成功地检测出样品内的不同物质。另外,在3D 结构玻璃微流体通道内由全飞秒激光加工出了具有2D周期性结构的纳米金属表面,可用于实时表面增强拉曼散射(SERS)的检测。全飞秒激光加工过程包括激光烧蚀、激光还原和激光诱导表面纳米工程。这些工作证明了超短脉冲激光在表面精密加工中的巨大潜力。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Srinivasan R, Sutcliffe E, Braren B. Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 1987;51(16):1285–7. 链接1

[ 2 ] Küper S, Stuke M. Femtosecond UV excimer laser ablation. Appl Phys B 1987;44(4):199–204. 链接1

[ 3 ] Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Functional regeneration after laser axotomy. Nature 2004;432(7019):822. 链接1

[ 4 ] Momma C, Chichkov BN, Nolte S, Von Alvensleben F, Tünnermann A, Welling H, et al. Short-pulse laser ablation of solid targets. Opt Commun 1996;129(1– 2):134–42. 链接1

[ 5 ] Bärsch N, Körber K, Ostendorf A, Tönshoff KH. Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl Phys A 2003;77 (2):237–42. 链接1

[ 6 ] Wellershoff SS, Hohlfeld J, Güdde J, Matthias E. The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A 1999;69(1): S99–107. 链接1

[ 7 ] Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photonics 2008;2(4):219–25. 链接1

[ 8 ] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 2014;3(4):e149. 链接1

[ 9 ] Hu A, Rybachuk M, Lu QB, Duley WW. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation. Appl Phys Lett 2007;91(13):131906. 链接1

[10] Zheng C, Hu A, Chen T, Oakes KD, Liu S. Femtosecond laser internal manufacturing of three-dimensional microstructure devices. Appl Phys A 2015;121(1):163–77. 链接1

[11] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 2013;7(1):22–44. 链接1

[12] Zhou W, Bridges D, Li R, Bai S, Ma Y, Hou T, et al. Recent progress of laser micro- and nano-manufacturing. Sci Lett J 2016;5:228. 链接1

[13] Küper S, Stuke M. Ablation of UV-transparent materials with femtosecond UV excimer laser pulses. Microelectro Eng 1989;9(1–4):475–80. 链接1

[14] Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014;5(1):5714. 链接1

[15] Watanabe W, Sowa S, Tamaki T, Itoh K, Nishii J. Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys 2006;45(29):L765–7. 链接1

[16] Yamasaki K, Juodkazis S, Watanabe M, Sun HB, Matsuo S, Misawa H. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films. Appl Phys Lett 2000;76(8):1000–2. 链接1

[17] Sowa S, Watanabe W, Tamaki T, Nishii J, Itoh K. Symmetric waveguides in poly (methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 2006;14(1):291–7. 链接1

[18] Zheng C, Hu A, Li R, Bridges D, Chen T. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser. Opt Express 2015;23(13):17584–98. 链接1

[19] Zheng C, Hu A, Kihm KD, Ma Q, Li R, Chen T, et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for superwide angle imaging. Small 2015;11(25):3007–16. 链接1

[20] Beidaghi M, Wang C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Funct Mater 2012;22(21):4501–10. 链接1

[21] Cheng C, Wang S, Wu J, Yu Y, Li R, Eda S, et al. Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl Mater Interfaces 2016;8(28):17784–92. 链接1

[22] Deubel M, Von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 2004;3(7):444–7.

[23] Gittard SD, Narayan RJ. Laser direct writing of micro- and nano-scale medical devices. Expert Rev Med Devices 2010;7(3):343–56. 链接1

[24] In JB, Hsia B, Yoo JH, Hyun S, Carraro C, Maboudian R, et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 2015;83:144–51. 链接1

[25] Luo S, Hoang PT, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016;96:522–31. 链接1

[26] Cai J, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A Mater Energy Sustain 2016;4 (5):1671–9. 链接1

[27] Hou T, Zheng C, Bai S, Ma Q, Bridges D, Hu A, et al. Fabrication, characterization, and applications of microlenses. Appl Opt 2015;54(24):7366–76. 链接1

[28] Li RZ, Peng R, Kihm KD, Bai S, Bridges D, Tumuluri U, et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaserreduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ Sci 2016;9(4):1458–67. 链接1

[29] Wang S, Yu Y, Li R, Feng G, Wu Z, Compagnini G, et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochim Acta 2017;241:153–61. 链接1

[30] Tran TT, Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends Analyt Chem 2016;79:222–32. 链接1

[31] Zhan B, Li C, Yang J, Huang W, Dong X. Graphene field-effect transistor and its application for electronic sensing. Small 2014;10(20):4042–65. 链接1

[32] Piqué A, Chrisey DB, Fitz-Gerald JM, McGill RA, Auyeung RCY, Wu HD, et al. Direct writing of electronic and sensor materials using a laser transfer technique. J Mater Res 2000;15(9):1872–5. 链接1

[33] Yu Y, Al Mamun KA, Shanta AS, Islam SK, McFarlane N. Vertically aligned carbon nanofibers as a cell impedance sensor. IEEE Trans NanoTechnol 2016;15(6):856–61. 链接1

[34] Malzahn K, Windmiller JR, Valdés-Ramírez G, Schöning MJ, Wang J. Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 2011;136(14):2912–7. 链接1

[35] Bakker A, Huijsing JH. Micropower CMOS temperature sensor with digital output. IEEE J Solid-State Circuits 1996;31(7):933–7. 链接1

[36] Kuang Q, Lao C, Wang ZL, Xie Z, Zheng L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 2007;129(19):6070–1. 链接1

[37] Sikarwar S, Yadav B. Opto-electronic humidity sensor: a review. Sens Actuators A Phys 2015;233:54–70. 链接1

[38] Mukhopadhyay SC. Wearable sensors for human activity monitoring: a review. IEEE Sens J 2015;15(3):1321–30. 链接1

[39] Li L, Zhang J, Peng Z, Li Y, Gao C, Ji Y, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv Mater 2016;28 (5):838–45. 链接1

[40] Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982;299(5881):352–5. 链接1

[41] Otto M, Thomas J. Model studies on multiple channel analysis of free magnesium, calcium, sodium, and potassium at physiological concentration levels with ion-selective electrodes. Anal Chem 1985;57(13):2647–51. 链接1

[42] Premanode B, Toumazou C. A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens Actuators B 2007;120(2):732–5. 链接1

[43] Lvova L, Pudi R, Galloni P, Lippolis V, Di Natale C, Lundström I, et al. Multitransduction sensing films for electronic tongue applications. Sens Actuators B 2015;207:1076–86. 链接1

[44] Gutés A, Ibáñez AB, Del Valle M, Céspedes F. Automated SIA e-tongue employing a voltammetric biosensor array for the simultaneous determination of glucose and ascorbic acid. Electroanalysis 2006;18(1):82–8. 链接1

[45] Ciosek P, Wroblewski W. Sensor arrays for liquid sensing—electronic tongue systems. Analyst 2007;132(10):963–78. 链接1

[46] Facure MH, Mercante LA, Mattoso LHC, Correa DS. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 2017;167:59–66. 链接1

[47] Zhao Y, Yang Q, Chang Y, Qu H, Pang W, Zhang H, et al. Detection and discrimination of volatile organic compounds using a single multi-resonance mode piezotransduced silicon bulk acoustic wave resonator (PSBAR) as virtual sensor array. Sens Actuators B 2018;254:1191–9. 链接1

[48] Yu Y, Joshi PC, Wu J, Hu A. Laser-induced carbon base smart flexible sensor array for multi flavors detection. ACS Appl Mater Interfaces 2018 [Internet] [cited 2018 Sep 29]. Available from: https://pubs.acs.org/doi/abs/10.1021/acsami.8b12626. 链接1

[49] Riul Jr A, Dantas CAR, Miyazaki CM, Oliveira Jr ON. Recent advances in electronic tongues. Analyst 2010;135(10):2481–95. 链接1

[50] Bae Y, Kim NH, Kim M, Lee KY, Han SW. Anisotropic assembly of Ag nanoprisms. J Am Chem Soc 2008;130(16):5432–3. 链接1

[51] Hu A, Duley W. Surface enhanced Raman spectroscopic characterization of molecular structures in diamond-like carbon films. Chem Phys Lett 2008;450 (4–6):375–8. 链接1

[52] Hu A, Lu QB, Duley WW, Rybachuk M. Spectroscopic characterization of carbon chains in nanostructured tetrahedral carbon films synthesized by femtosecond pulsed laser deposition. J Chem Phys 2007;126(15):154705. 链接1

[53] Phan-Quang GC, Wee EHZ, Yang F, Lee HK, Phang IY, Feng X, et al. Online flowing colloidosomes for sequential multi-analyte high-throughput SERS Analysis. Angew Chem Int Ed 2017;56(20):5565–9. 链接1

[54] Hu A, Sanderson J, Zaidi AA, Wang C, Zhang T, Zhou Y, et al. Direct synthesis of polyyne molecules in acetone by dissociation using femtosecond laser irradiation. Carbon 2008;46(13):1823–5. 链接1

[55] Pallaoro A, Hoonejani MR, Braun GB, Meinhart CD, Moskovits M. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 2015;9 (4):4328–36. 链接1

[56] Lu G, De Keersmaecker H, Su L, Kenens B, Rocha S, Fron E, et al. Live-cell SERS endoscopy using plasmonic nanowire waveguides. Adv Mater 2014;26 (30):5124–8. 链接1

[57] Yin J, Wu T, Song J, Zhang Q, Liu S, Xu R, et al. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem Mater 2011;23 (21):4756–64. 链接1

[58] Bai S, Lin YH, Zhang XP, Zhou WP, Chen T, Ma Y, et al. Two-step photonic reduction of controlled periodic silver nanostructures for surface-enhanced Raman spectroscopy. Plasmonics 2015;10(6):1675–85. 链接1

[59] Blackie EJ, Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc 2009;131(40):14466–72. 链接1

[60] Bai S, Zhou W, Tao C, Oakes K, Hu A. Laser-processed nanostructures of metallic substrates for surface-enhanced Raman spectroscopy. Curr Nanosci 2014;10(4):486–96. 链接1

[61] Zhang XY, Hu A, Zhang T, Lei W, Xue XJ, Zhou Y, et al. Self-assembly of largescale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 2011;5(11):9082–92. 链接1

[62] Kneipp K, Kneipp H, Manoharan R, Itzkan I, Dasari RR, Feld MS. Surfaceenhanced Raman scattering (SERS)—a new tool for single molecule detection and identification. Bioimaging 1998;6(2):104–10. 链接1

[63] Bai S, Zhou W, Lin Y, Zhao Y, Chen T, Hu A, et al. Ultraviolet pulsed laser interference lithography and application of periodic structured Agnanoparticle films for surface-enhanced Raman spectroscopy. J Nanopart Res 2014;16(7):2470. 链接1

[64] Lin D, Wu Z, Li S, Zhao W, Ma C, Wang J, et al. Large-area Au-nanoparticlefunctionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 2017;11(2):1478–87. 链接1

[65] Yang J, Li J, Du Z, Gong Q, Teng J, Hong M. Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Sci Rep 2014;4 (1):6657. 链接1

[66] Bai S, Serien D, Hu A, Sugioka K. 3D microfluidic surface-enhanced raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv Funct Mater 2018;28(23):1706262. 链接1

[67] Yang S, Dai X, Stogin BB, Wong TS. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci USA 2016;113 (2):268–73. 链接1

相关研究