期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第2期 doi: 10.1016/j.eng.2018.11.026

基于高等分析的钢结构设计——材料建模与应变极限

Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK

收稿日期: 2018-07-31 修回日期: 2018-09-10 录用日期: 2018-11-12 发布日期: 2019-02-26

下一篇 上一篇

摘要

我们对于钢框架的结构分析通常通过梁单元来进行。然而,由于该类单元无法确切地捕捉钢材截面的局部屈曲行为,因此,传统的钢结构设计规范采用截面分类的概念来确定截面强度以及变形能力受材料局部屈曲影响的程度。而塑性设计方法的使用仅限于 1 级截面,其具有足够的转动能力以形成塑性铰并引发倒塌机制。在更高级截面中,局部屈曲阻止了具有这种转动能力的塑性铰的形成,除非出于计算需求而使用壳单元,否则我们需要对材料进行弹性分析。然而,本文证明了通过将连续强度法(CSM)及其应变极限纳入分析,可以在梁单元中有效地模拟局部屈曲。此外,通过进行几何非线性和材料非线性的高等分析,可确保无需进行额外的设计检查。如果采用适当而精确的应力 - 应变关系,我们在较粗截面中观察到的应变硬化所带来的积极影响亦可以得到有效应用;为此,我们在文详尽地描述了一个用于热轧钢的四元线性材料模型。对于一致的高等分析框架中任意细长比截面的分析问题, CSM 应变极限分析法均适用,同时还可以从荷载重新分配水平的优化中受益。本文所提出的方法可用于单个构件、连续梁单元及相关框架结构,并且在精度与一致性等方面与当前钢结构设计规范相比,本方法具有显著优势。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] EN 1993-1-1: Eurocode 3—design of steel structures—Part 1-1: general rules and rules for buildings. European standard. Brussels: European Committee for Standardization; 2005.

[ 2 ] AS 4100: Steel structures. Australian standard. Sydney: Standards Australia; 1998.

[ 3 ] AISC 360-16: Specification for structural steel buildings. American national standard. Chicago: American Institute of Steel Construction; 2016.

[ 4 ] Liew JYR, Chen WF, Chen H. Advanced inelastic analysis of frame structures. J Construct Steel Res 2000;55(1–3):245–65. 链接1

[ 5 ] Chen WF. Advanced analysis for structural steel building design. Front Archit Civ Eng China 2008;2(3):189–96. 链接1

[ 6 ] Kim SE, Chen WF. Design guide for steel frames using advanced analysis program. Eng Struct 1999;21(4):352–64. 链接1

[ 7 ] Trahair NS, Chan SL. Out-of-plane advanced analysis of steel structures. Eng Struct 2003;25(13):1627–37. 链接1

[ 8 ] Buonopane SG, Schafer BW. Reliability of steel frames designed with advanced analysis. J Struct Eng 2006;132(2):267–76. 链接1

[ 9 ] Rasmussen KJR, Zhang H, Cardoso F, Liu W. The direct design method for cold– formed steel structural frames. In: Proceedings of the 8th International Conference on Steel and Aluminium Structures; 2016 Dec 7–9; Hong Kong, China.

[10] Surovek AE. Advanced analysis in steel frame design: guidelines for direct second-order inelastic analysis. Reston: American Society of Civil Engineers; 2012. 链接1

[11] Gardner L. The continuous strength method. Proc Inst Civ Eng Struct Build 2008;161(3):127–33. 链接1

[12] Gardner L, Yun X, Macorini L, Kucukler M. Hot-rolled steel and steel-concrete composite design incorporating strain hardening. Structures 2017;9: 21–8. 链接1

[13] Yun X, Gardner L. Stress-strain curves for hot-rolled steels. J Construct Steel Res 2017;133:36–46. 链接1

[14] Yun X, Gardner L, Boissonnade N. The continuous strength method for the design of hot-rolled steel cross-sections. Eng Struct 2018;157:179–91. 链接1

[15] Yun X, Gardner L, Boissonnade N. Ultimate capacity of I-sections under combined loading—Part 2: parametric studies and CSM design. J Construct Steel Res 2018;148:265–74. 链接1

[16] Zhang H, Shayan S, Rasmussen KJR, Ellingwood BR. System-based design of planar steel frames, I: reliability framework. J Construct Steel Res 2016;123:135–43. 链接1

[17] Yun X, Gardner L, Boissonnade N. Ultimate capacity of I-sections under combined loading—Part 1: experiments and FE model validation. J Construct Steel Res 2018;147:408–21. 链接1

[18] Chan TM, Gardner L. Bending strength of hot-rolled elliptical hollow sections. J Construct Steel Res 2008;64(9):971–86. 链接1

[19] Wang J, Afshan S, Gkantou M, Theofanous M, Baniotopoulos C, Gardner L. Flexural behaviour of hot-finished high strength steel square and rectangular hollow sections. J Construct Steel Res 2016;121:97–109. 链接1

[20] EN 1993-1-5: Eurocode 3—design of steel structures—Part 1–5: plated structural elements. European standard. Brussels: European Committee for Standardization; 2006.

[21] Seif M, Schafer BW. Local buckling of structural steel shapes. J Construct Steel Res 2010;66(10):1232–47. 链接1

[22] Gardner L, Fieber A, Macorini L. Formulae for calculating elastic local buckling stresses of full structural cross-sections. Structures 2019;17:2–20. 链接1

[23] Li Z, Schafer BW. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM: conventional and constrained finite strip methods. In: Proceedings of the 20th International Speciality Conference on Cold-Formed Steel Structures; 2010 Nov 3–4; Saint Louis, MO, USA. Rolla: Missouri University of Science and Technology; 2010. p. 1731.

[24] Lay MG. The experimental bases of plastic design—a survey of the literature. Fritz laboratory report. Bethlehem: Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University; 1964 Sep. Report No.: 297.3. Publication No.: 258.

[25] Gioncu V, Petcu D. Available rotation capacity of wide-flange beams and beam-columns. Part 2. Experimental and numerical tests. J Construct Steel Res 1997;43(1–3):219–44. 链接1

[26] Lay MG, Galambos TV. The inelastic behavior of beams under moment gradient. Fritz Engineering Laboratory Report. Bethlehem: Lehigh University; 1964. Report No.: 197.

[27] Dassault Systemes Simulia Corp. Abaqus analysis user’s manual, version 6.13. Providence: Dassault Systemes; 2013.

[28] Crisfield MA. A fast incremental/iterative solution procedure that handles ‘snap-through’. Comput Struct 1981;13(1–3):55–62. 链接1

[29] Greiner R, Lechner A, Kettler M. Background information to design guidelines for cross-section and member design according to Eurocode 3 with particular focus on semi-compact sections. Graz: Institute for Steel Structures and Shell Structures; 2012. 链接1

[30] Avery P, Mahendran M. Large-scale testing of steel frame structures comprising non-compact sections. Eng Struct 2000;22(8):920–36. 链接1

相关研究