期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第2期 doi: 10.1016/j.eng.2018.11.031

高性能多功能水泥基复合材料

Department of Civil and Environmental Engineering, University of Michigan, MI 48109-2125, USA

收稿日期 :2018-08-02 修回日期 :2018-10-02 录用日期 : 2018-11-15 发布日期 :2019-03-09

下一篇 上一篇

摘要

混凝土是一种不断发展的材料,甚至高性能混凝土的定义也正随着时间的推移而发生变化。本文所说的混凝土材料的高性能特性是指那些直接影响我们生活质量的民用基础设施的理想耐久性、回弹性和可持续性的特性。这些特性包括拉伸延展性、自体裂缝宽度控制和材料的“绿色”环保性。此外,智能功能应旨在通过响应结构周围环境的变化来提高基础设施的耐久性、回弹性和可持续性以实现其理想功能,从而使材料的行为方式更类似于某些生物材料。本文基于工程水泥基复合材料(ECC)的最新研究进展,提出可以设计出具有高性能兼智能多功能性的混凝土材料,并且其具有满足 21 世纪民用基础设施预期需求的潜力。本文重点介绍了 ECC 的相关特性以及未来研究的方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

参考文献

[1]  Brundtland GH. Our common future: report of the World Commission on Environment and Development. Oxford: Oxford University Press; 1987. 链接1

[2]  Rokugo K, Kanda T, Yokota H, Sakata N. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan. Mater Struct 2009;42(9):1197–208. 链接1

[3]  Wang K, Jansen DC, Shah SP, Karr AF. Permeability study of cracked concrete. Cement Concr Res 1997;27(3):381–93. 链接1

[4]  Lepech MD, Li VC. Water permeability of engineered cementitious composites. Cement Concr Compos 2009;31(10):744–53. 链接1

[5]  Sahmaran M, Li M, Li VC. Transport properties of engineered cementitious composites under chloride exposure. ACI Mater J 2007;104(6):604–11. 链接1

[6]  Liu H, Zhang Q, Gu C, Su H, Li VC. Influence of micro-cracking on the permeability of engineered cementitious composites. Cement Concr Compos 2016;72:104–13. 链接1

[7]  Djerbi A, Bonnet S, Khelidj A, Baroghel-bouny V. Influence of traversing crack on chloride diffusion into concrete. Cement Concr Res 2008;38(6):877–83. 链接1

[8]  Sahmaran M, Yaman _ IÖ. Influence of transverse crack width on reinforcement corrosion initiation and propagation in mortar beams. Can J Civ Eng 2008;35 (3):236–45. 链接1

[9]  Blagojevic A. The influence of cracks on the durability and service life of reinforced concrete structures in relation to chloride-induced corrosion [dissertation]. Delft: Delft University of Technology; 2016. 链接1

[10]  Wang S, Li VC. Engineered cementitious composites with high-volume fly ash. ACI Mater J 2007;104(3):233–41. 链接1

[11]  Li VC, Stang H. Elevating FRC material ductility to infrastructure durability. In: Proceedings of the 6th RILEM Symposium Fiber-Reinforced Concretes; 2004 Sep 20–22; Varenna, Italy; 2004. p. 171–86.

[12]  Miyazato S, Hiraishi Y. Transport properties and steel corrosion in ductile fiber reinforced cement composites. In: Proceedings of the 11th International Conference on Fracture; 2005 Mar 20–25; Turin, Italy; 2005. p. 1500–5.

[13]  Sahmaran M, Li VC, Andrade C. Corrosion resistance performance of steelreinforced engineered cementitious composite beams. ACI Mater J 2008;105 (3):243–50. 链接1

[14]  Sahmaran M, Lachemi M, Li VC. Assessing the durability of engineered cementitious composites under freezing and thawing cycles. J ASTM Int 2009;6(7):JAI102406. 链接1

[15]  Van Zijl GPAG, Wittmann FH, Oh BH, Kabele P, Toledo Filho RD, Fairbairn EMR, et al. Durability of strain-hardening cement-based composites (SHCC). Mater Struct 2012;45(10):1447–63. 链接1

[16]  Ranade R, Zhang J, Lynch JP, Li VC. Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cement Concr Res 2014;58:1–12. 链接1

[17]  Lepech MD, Li VC. Application of ECC for bridge deck link slabs. Mater Struct 2009;42(9):1185–95. 链接1

[18]  Keoleian GA, Kendall A, Dettling JE, Smith VM, Chandler RF, Lepech MD, et al. Life cycle modeling of concrete bridge design: comparison of engineered cementitious composite link slabs and conventional steel expansion joints. J Infrastruct Syst 2005;11(1):51–60. 链接1

[19]  Yang EH, Yang Y, Li VC. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Mater J 2007;104 (6):620–8. 链接1

[20]  Zhou J, Qian S, Sierra Beltran MG, Ye G, van Breugel K, Li VC. Development of engineered cementitious composites with limestone powder and blast furnace slag. Mater Struct 2010;43(6):803–14. 链接1

[21]  Huang X, Ranade R, Li VC. Feasibility study of developing green ECC using iron ore tailings powder as cement replacement. J Mater Civ Eng 2013;25 (7):923–31. 链接1

[22]  Ohno M, Li VC. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Constr Build Mater 2014;57: 163–8. 链接1

[23]  Lepech MD, Li VC, Robertson RE, Keoleian GA. Design of green engineered cementitious composites for improved sustainability. ACI Mater J 2008;105 (6):567–75. 链接1

[24]  Huang X, Ranade R, Ni W, Li VC. Development of green engineered cementitious composites using iron ore tailings as aggregates. Constr Build Mater 2013;44:757–64. 链接1

[25]  Soltan DG, das Neves P, Olvera A, Savastano Junior H, Li VC. Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior. Ind Crops Prod 2017;103:1–12. 链接1

[26]  Fischer G, Li VC. Effect of matrix ductility on deformation behavior of steelreinforced ECC flexural members under reversed cyclic loading conditions. ACI Struct J 2002;99(6):781–90. 链接1

[27]  Fukuyama H, Sato Y, Li VC, Matsuzaki Y, Mihashi H. Ductile engineered cementitious composite elements for seismic structural application. In: Proceedings of the 12th World Conference on Earthquake Engineering; 2000 Jan 30–Feb 4; Auckland, New Zealand; 2000.

[28]  Fischer G, Fukuyama H, Li VC. Effect of matrix ductility on the performance of reinforced ECC column members under reversed cyclic loading conditions. In: Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites: Application and Evaluation; 2002 Oct 21–22; Takayama, Japan; 2002. p. 269–78.

[29]  Parra-Montesinos G, Wight JK. Seismic response of exterior RC column-tosteel beam connections. J Struct Eng 2000;126(10):1113–21. 链接1

[30]  Fischer G, Li VC. Intrinsic response control of moment-resisting frames utilizing advanced composite materials and structural elements. ACI Struct J 2003;100(2):166–76. 链接1

[31]  Kesner K, Billington SL. Investigation of infill panels made from engineered cementitious composites for seismic strengthening and retrofit. J Struct Eng 2005;131(11):1712–20. 链接1

[32]  Dehghani A, Nateghi-Alahi F, Fischer G. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames. Eng Struct 2015;105:197–208. 链接1

[33]  Kanda T, Nagai S, Maruta M, Yamamoto Y. New high-rise R/C structure using ECC coupling beams. In: Proceedings of the 2nd International RILEM Conference on Strain Hardening Cementitious Composites; 2011 Dec 12–14; Rio de Janeiro, Brazil; 2011. p. 289–96.

[34]  Alkan C. Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochim Acta 2006;451(1– 2):126–30. 链接1

[35]  Desai D, Miller M, Lynch JP, Li VC. Development of thermally adaptive engineered cementitious composite for passive heat storage. Constr Build Mater 2014;67(Pt C):366–72. 链接1

[36]  Yang Y, Lepech MD, Yang EH, Li VC. Autogenous healing of engineered cementitious composites under wet–dry cycles. Cement Concr Res 2009;39 (5):382–90. 链接1

[37]  De Rooij M, van Tittelboom K, de Belie N, Schlangen E. Self-healing phenomena in cement-based materials. Dordrecht: Springer; 2013. 链接1

[38]  Fan S, Li M. X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites. Smart Mater Struct 2015;24(1):015021. 链接1

[39]  Kan LL, Shi HS, Sakulich AR, Li VC. Self-healing characterization of engineered cementitious composite materials. ACI Mater J 2010;107(6):617–24. 链接1

[40]  Yıldırım G, Khiavi AH, Yesilmen S, Sahmaran M. Self-healing performance of aged cementitious composites. Cement Concr Compos 2018;87:172–86. 链接1

[41]  Yamamoto A, Watanabe K, Li VC, Niwa J. Effect of wet–dry condition on selfhealing property of early-age ECC. Jap Concr Inst 2010;32(1):251–6. 链接1

[42]  Cassar L, Beeldens A, Pimpinelli N, Guerrini GL. Photocatalysis of cementitious materials. In: Proceedings of the International RILEM Symposium on Photocatalysis, Environment and Construction Materials; 2007 Oct 8– 9; Florence, Italy. Paris: RILEM Publications SARL; 2007. p. 131–45. 链接1

[43]  Cassar L. Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bull 2004;29(5):328–31. 链接1

[44]  Zhao A, Yang J, Yang EH. Self-cleaning engineered cementitious composites. Cement Concr Compos 2015;64:74–83. 链接1

[45]  Chung DDL. Self-monitoring structural materials. Mater Sci Eng Rep 1998;22 (2):57–78. 链接1

[46]  Hou T, Lynch JP. Tomographic imaging of crack damage in cementitious structural components. In: Proceedings of the 4th International Conference on Earthquake Engineering; 2006 Oct 12–13; Taipei, China; 2006.

相关研究