期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2018.11.034

稀土永磁体的前景与展望

a School of Physics & Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland

b Department of Materials Science, Beihang University, Beijing 100191, China

收稿日期: 2018-08-07 修回日期: 2018-09-19 录用日期: 2018-11-12 发布日期: 2019-06-19

下一篇 上一篇

摘要

稀土永磁是一项成熟的技术,但2011年稀土危机的冲击导致人们重新考量20世纪80年代和90年代的许多关于几乎不含稀土(或重稀土)的新型硬磁材料的想法。Nd-Fe-B永磁通过精心巧妙的优化,适用于需要以合理成本获得高性能的广泛应用领域。当需要高温稳定性时,Sm-Co是首选材料,而某些应用也逐渐开始使用Sm-Fe-N磁体。对这些基本材料的元素替代改进的范围已经进行了相当深入的探讨,同时制备技术对微观结构和磁滞现象的影响也已深入了解。上一代的一个很宏大的想法,即制备交换耦合硬/软纳米复合的各向异性磁体,来显著提高创纪录的磁能积。然而,事实证明这很难实现。尽管如此,该领域已取得发展,而其他领域的创新也在不断蓬勃发展。例如,电动私人交通已经从电动自行车发展到电驱动的汽车和卡车成为主流,并且由此可见,电动运输很有可能结束内燃机的主导地位。随着越来越清晰地了解特定永磁体的局限性,人们开始围绕它进行具有独创性和想象力的设计,并最有效地利用了可用的稀土资源混合物。此外,机器人技术正在吸引着巨大的新市场,而且人们才刚刚开始探索增材制造所提供的机会。提高磁体高温稳定性的新方法也正在开发中,并且具有其他有用特性的硬磁体的集成多功能性也正在设想中。这些研究课题将在本文中通过各种示例进行详细说明。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图11

参考文献

[ 1 ] Coey JMD. Permanent magnets. In: Webster JG, editor. Wiley encyclopedia of electrical and electronic engineering. Hoboken: John Wiley & Sons, Inc.; 2014. 链接1

[ 2 ] Skomski R, Coey JMD. Magnetic anisotropy—how much is enough for a permanent magnet? Scr Mater 2016;112:3–8. 链接1

[ 3 ] Skomski R. Permanent magnets: history, current research, and outlook. In: Zhukov A, editor. Novel functional magnetic materials. Cham: Springer International Publishing AG; 2016. p. 359–95. 链接1

[ 4 ] Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd–Fe–B permanent magnets. Scr Mater 2018;151:6–13. 154:277–283. 链接1

[ 5 ] Hu B, Rao X, Wang Y. Rare earth permanent magnet materials. 2 volumes. Beijing: Metallurgical Industry Press; 2017. Chinese. 链接1

[ 6 ] Coey JMD. Magnetism and magnetic materials. Cambridge: Cambridge University Press; 2010. 链接1

[ 7 ] Brown WF. Micromagnetics. New York: Interscience Publishers, Inc.; 1963. 链接1

[ 8 ] Coey JMD. Hard magnetic materials: a perspective. IEEE Trans Magn 2011;47 (12):4671–81. 链接1

[ 9 ] Skokov KP, Gutfleisch O. Heavy rare earth free, free rare earth and rare earth free magnets—vision and reality. Scr Mater 2018;154:289–94. 链接1

[10] Mohapatra J, Liu JP. Rare-earth-Efree permanent magnets: the past and future. In: Bruck E, editor. Handbook of Magnetic Mterials, 27. Amsterdam: Elsevier; 2018. p. 1–58. 链接1

[11] Jellinghaus W. New alloys with high coercive force. Z Tech Physik 1936;17:33–6. 链接1

[12] Klemmer T, Hoydick D, Okumura H, Zhang B, Soffa WA. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scr Metall Mater 1995;33(10–11):1793–805. 链接1

[13] Kooy C, Enz U. Experimental and theoretical study of the domain configuration in thin layers of BaFe12O19. Philips Res Repts 1960;15:7–29. 链接1

[14] Sagawa M, Fujimura S, Yamamoto H, Matsuura Y, Hiraga K. Permanent magnet materials based on the rare earth–iron–boron tetragonal compounds. IEEE Trans Magn 1984;20(5):1584–9. 链接1

[15] Sagawa M, Hirosawa S, Yamamoto H, Fujimura S, Matsuura Y. Nd–Fe–B permanent magnet materials. Jpn J Appl Phys 1987;26(6):785–800. 链接1

[16] Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys 1991;63(4):819–98. 链接1

[17] Kumar K. RETM5 and RE2TM17 permanent magnets development. J Appl Phys 1988;63(6):R13–57. 链接1

[18] Coey JMD, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia. J Magn Magn Mater 1990;87 (3):L251–4. 链接1

[19] Iriyama T, Kobayashi K, Imaoka N, Fukuda T, Kato H, Nakagawa Y. Effect of nitrogen content on magnetic properties of Sm2Fe17Nx (0 < x < 6). IEEE Trans Magn 1992;28(5):2326–31. 链接1

[20] Kalache A, Markou A, Selle S, Höche T, Sahoo R, Fecher GH, et al. Heteroepitaxial growth of tetragonal Mn2.7–xFexGa1.3 (0  x  1.2) Heusler films with perpendicular magnetic anisotropy. APL Mater 2017;5(9):096102. 链接1

[21] Skomski R, Coey JMD. Giant energy product in nanostructured two-phase magnets. Phys Rev B Condens Matter 1993;48(21):15812–6. 链接1

[22] Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn 1991;27(4):3588–660. 链接1

[23] Jiang JS, Bader SD. Rational design of the exchange-spring permanent magnet. J Phys Condens Matter 2014;26(6):064214. 链接1

[24] Coey JMD, O’Donnell K, Qinian Q, Touchais E, Jack KH. The magnetization of a00Fe16N2. J Phys Condens Matter 1994;6(4):L23–8. 链接1

[25] Dobosz I, Gumowska W, Czapkiewicz M. Structure and magnetic properties of Co nanowires electrodeposited into the pores of anodic alumina membranes. J Solid State Electrochem 2014;18(11):2963–72. 链接1

[26] Dumestre F, Chaudret B, Amiens C, Fromen MC, Casanove MJ, Renaud P, et al. Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew Chem Int Ed Engl 2002;41(22):4286–9. 链接1

[27] Harris VG, Chen Y, Yang A, Yoon S, Chen Z, Geiler AL, et al. High coercivity cobalt carbide nanoparticles processed via polyol reaction: a new permanent magnet material. J Phys D Appl Phys 2010;43(16):165003. 链接1

[28] Li X, Lou L, Song W, Huang G, Hou F, Zhang Q, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv Mater 2017;29(16):1606430. 链接1

[29] Gandha K, Elkins K, Poudyal N, Liu X, Liu JP. High energy product developed from cobalt nanowires. Sci Rep 2014;4(1):5345. 链接1

[30] Anagnostopoulou E, Grindi B, Lacroix LM, Ott F, Panagiotopoulos I, Viau G. Dense arrays of cobalt nanorods as rare-earth free permanent magnets. Nanoscale 2016;8(7):4020–9. 链接1

[31] Ener S, Anagnostopoulou E, Dirba I, Lacroix LM, Ott F, Blon T, et al. Consolidation of cobalt nanorods: a new route for rare-earth free nanostructured permanent magnets. Acta Mater 2018;145:290–7. 链接1

[32] Gandha K, Mohapatra J, Liu JP. Coherent magnetization reversal and high magnetic coercivity in Co nanowire assemblies. J Magn Magn Mater 2017;438:41–5. 链接1

[33] Katter M, Wecker J, Schultz L, Grössinger R. Magnetocrystalline anisotropy of Sm2Fe17N2. J Magn Magn Mater 1990;92(1):L14–8. 链接1

[34] Skomski R. Interstitial modification. In: Coey JMD, editor. Rare-earth iron permanent magnets. Oxford: Clarendon Press; 1996. p. 178–217. 链接1

[35] Miraglia S, Soubeyroux JL, Kolbeck C, Isnard O, Fruchart D, Guillot M. Structural and magnetic properties of ternary nitrides R2Fe17Nx (R  Nd, Sm). J Less Common Met 1991;171(1):51–61. 链接1

[36] Chiba A, Hokamoto K, Sugimoto S, Kozuka T, Mori A, Kakimoto E. Explosive consolidation of Sm–Fe–N and Sm–Fe–N/(Ni, Co) magnetic powders. J Magn Magn Mater 2007;310(2):e881–3. 链接1

[37] Hu BP, Rao XL, Xu JM, Liu GC, Wang YZ, Dong XL, et al. Magnetic properties of sintered Sm2Fe17Ny magnets. J Appl Phys 1993;74(1):489–94. 链接1

[38] Chiba A, Ooyabu K, Morizono Y, Maeda T, Sugimoto S, Kozuka T, et al. Shock consolidation of Sm–Fe–N magnetic powders and magnetic properties. Mater Sci Forum 2004;449–452:1037–40. 链接1

[39] Zhang DT, Yue M, Zhang JX. Study on bulk Sm2Fe17Nx sintered magnets prepared by spark plasma sintering. Powder Metall 2007;50(3):215–8. 链接1

[40] Saito T. Consolidation of Sm5Fe17 powder by spark plasma sintering method. Mater Sci Eng B 2008;150(1):38–42. 链接1

[41] Saito T. Magnetic properties of Sm–Fe–N anisotropic magnets produced by magnetic-field-assisted spark plasma sintering. Mater Sci Eng B 2010;167 (2):75–9. 链接1

[42] Saito T, Deguchi T, Yamamoto H. Magnetic properties of Sm–Fe–N bulk magnets produced from Cu-plated Sm–Fe–N powder. AIP Adv 2017;7 (5):056204. 链接1

[43] Otani Y, Moukarika A, Sun H, Coey JMD, Devlin E, Harris IR. Metal bonded Sm2Fe17N3–d magnets. J Appl Phys 1991;69(9):6735–7. 链接1

[44] Matsuura M, Shiraiwa T, Tezuka N, Sugimoto S, Shoji T, Sakuma N, et al. High coercive Zn-bonded Sm–Fe–N magnets prepared using fine Zn particles with low oxygen content. J Magn Magn Mater 2018;452:243–8. 链接1

[45] Noguchi K, Machida K, Yamamoto K, Nishimura M, Adachi G. Highperformance resin-bonded magnets produced from zinc metal-coated Sm2(Fe0.9Co0.1)17Nx fine powders. Appl Phys Lett 1999;75(11):1601–3. 链接1

[46] Otogawa K, Takagi K, Asahi T. Consolidation of Sm2Fe17N3 magnets with Smbased eutectic alloy binder. J Alloys Compd 2018;746:19–26. 链接1

[47] Kobayashi K, Skomski R, Coey JMD. Dependence of coercivity on particle size in Sm2Fe17N3 powders. J Alloys Compd 1995;222(1–2):1–7. 链接1

[48] Ishikawa T, Yokosawa K, Watanabe K, Ohmori K. Modified process for highperformance anisotropic Sm2Fe17N3 magnet powder. J Phys Conf Ser 2011;266 (1):012033. 链接1

[49] Katter M, Wecker J, Schultz L. Structural and hard magnetic properties of rapidly solidified Sm–Fe–N. J Appl Phys 1991;70(6):3188–96. 链接1

[50] Coey JMD, Stamenov P, Porter SB, Venkatesan M, Zhang R, Iriyama T. Sm–Fe–N revisited; remanence enhancement in melt-spun Nitroquench material. J Magn Magn Mater 2019;480:186–92. 链接1

[51] Brown WF. Virtues and weaknesses of the domain concept. Rev Mod Phys 1945;17(1):15–9. 链接1

[52] Hono K. Rare earth permanent magnets with ultimate hard magnetic properties [abstract]. In: Proceedings of 2018 IEEE International Magnetics Conference (INTERMAG); 2018 Apr 23–27; Singapore. Piscataway: IEEE; 2018. p. 829. 链接1

[53] Gabay AM, Hadjipanayis GC. Recent developments in RFe12-type compounds for permanent magnets. Scr Mater 2018;154:284–8. 链接1

[54] Hirosawa S, Nishino M, Miyashita S. Perspectives for high performance permanent magnets: applications, coercivity, and new materials. Adv Nat Sci Nanosci Nanotechnol 2017;8(1):013002. 链接1

[55] Kuno T, Suzuki S, Urushibata K, Kobayashi K, Sakuma N, Yano M, et al. (Sm,Zr) (Fe,Co)11.0-11.5Ti1.0-0.5 compounds as new permanent magnet materials. AIP Adv 2016;6(2):025221. 链接1

[56] Coey JMD, Otani Y, Sun H, Hurley DPF. Magnetic properties of interstitial compounds Sm(Fe11Ti)X1–d (X = N, C). J Magn Soc Jpn 1991;15(4):769–72. 链接1

[57] Yang YC, Zhang X, Ge S, Pan Q, Kong L, Li H, et al. Magnetic and crystallographic properties of novel Fe-rich rare-earth nitrides of the type RTiFe11N1–d. J Appl Phys 1991;70(10):6001–5. 链接1

[58] Hirayama Y, Takahashi YK, Hirosawa S, Hono K. NdFe12Nx hard-magnetic compound with high magnetization and anisotropy field. Scr Mater 2015;95:70–2. 链接1

[59] Sato T, Ohsuna T, Yano M, Kato A, Kaneko Y. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer. J Appl Phys 2017;122(5):053903. 链接1

[60] Hirayama Y, Takahashi YK, Hirosawa S, Hono K. Intrinsic hard magnetic properties of Sm(Fe1–xCox)12 compound with the ThMn12 structure. Scr Mater 2017;138:62–5. 链接1

[61] Tozman P, Sepehri-Amin H, Takahashi YK, Hirosawa S. Hono K. Intrinsic magnetic properties of Sm(Fe1–xCox)11Ti and Zr-substituted Sm1–yZry(Fe0.8Co0.2)11.5Ti0.5 compounds with ThMn12 structure toward the development of permanent magnets. Acta Mater 2018;153:354–63. 链接1

[62] Suzuki S, Kuno T, Urushibata K, Kobayashi K, Sakuma N, Washio K, et al. A (Nd, Zr)(Fe,Co)11.5Ti0.5Nx compound as a permanent magnet material. AIP Adv 2014;4(11):117131. 链接1

[63] Körner W, Krugel G. Elsässer C Theoretical screening of intermetallic ThMn12- type phases for new hard-magnetic compounds with low rare earth content. Sci Rep 2016;6:24686. 链接1

[64] Körner W, Krugel G, Urban DF, Elsässer C. Screening of rare-earth-lean intermetallic 1-11 and 1-11-X compounds of YNi9In2-type for hard-magnetic applications. Scr Mater 2018;154:295–9. 链接1

[65] Goll D, Loeffler R, Hohs D, Schneider G. Reaction sintering as a highthroughput approach for magnetic materials development. Acta Met 2018;146:355–61. 链接1

[66] Loewe K, Benke D, Kübel C, Lienig T, Skokov KP, Gutfleisch O. Grain boundary diffusion of different rare earth elements in Nd–Fe–B sintered magnets by experiment and FEM simulation. Acta Mater 2017;124:421–9. 链接1

[67] Hussain M, Zhao LZ, Zhang C, Jiao DL, Zhong XC, Liu ZW. Compositiondependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys. Phys B 2016;483:69–74. 链接1

[68] Rao X, Niu E, Du F, Hu B. Effect of cerium on magnetic properties of sintered R– Fe–B permanent magnet. [abstract]. Proceedings of 2018 IEEE International Magnetics Conference (INTERMAG); 2018 Apr 23–27; Singapore, Singapore. Piscataway: IEEE; 2018. 链接1

[69] Kuzmin MD, Skokov KP, Jian H, Radulov I, Gutfleisch O. Towards highperformance permanent magnets without rare earths. J Phys Condens Matter 2014;26(6):064205. 链接1

[70] Coey JMD. Permanent magnets: plugging the gap. Scr Mater 2012;67 (6):524–9. 链接1

[71] Paranthaman MP, Shafer CS, Elliott AM, Siddel DH, McGuire MA, Springfield RM, et al. Binder jetting: a novel NdFeB bonded magnet fabrication process. JOM 2016;68(7):1978–82. 链接1

[72] Huber C, Abert C, Bruckner F, Groenefeld M, Muthsam O, Schuschnigg S, et al. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer. Appl Phys Lett 2016;109(16):162401. 链接1

[73] Li L, Tirado A, Nlebedim IC, Rios O, Post B, Vlastimil K, et al. Big area additive manufacturing of high performance bonded NdFeB magnets. Sci Rep 2016;6:36212. 链接1

[74] Compton BG, Kemp JW, Novikov TV, Pack RC, Nlebedim CI, Duty CE, et al. Direct-write 3D printing of NdFeB bonded magnets. Mater Manuf Process 2018;33(1):109–13. 链接1

[75] Li L, Tirado A, Conner BS, Chi MF, Elliott AM, Rios O, et al. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication. J Magn Magn Mater 2017;438:163–7. 链接1

[76] Huber C, Abert C, Bruckner F, Groenefeld M, Schuschnigg S, Teliban I, et al. 3D printing of polymer-bonded rare-earth magnets with a variable magnetic compound fraction for a predefined stray field. Sci Rep 2017;7(1):9419. 链接1

[77] Kolb B, Huber F, Akbulut B, Donocik C, Urban N, Maurer D, et al. Laser beam melting of NdFeB for the production of rare-earth magnets. In: Proceedings of the 6th International Electric Drives Production Conference; 2016 Nov 30–Dec 1; Nuremberg, Germany. Piscataway: IEEE; 2016. p. 34–40. 链接1

[78] Jac´imovic´ J, Binda F, Herrmann LG, Greuter F, Genta J, Calvo M, et al. Net shape 3D printed NdFeB permanent magnet. Adv Elec Mater 2017;19(8):1700098. 链接1

[79] Baldissera AB, Pavez P, Wendhausen PAP, Ahrens CH. Mascheroni JM. Additive manufacturing of bonded Nd–Fe–B—effect of process parameters on magnetic properties. IEEE Trans Magn 2017;53(11):7948722. 链接1

[80] Li L, Jones K, Sales B, Pries JL, Nlebedim IC, Jin K, et al. Fabrication of highly dense isotropic Nd–Fe–B nylon bonded magnets via extrusion-based additive manufacturing. Addit Manuf 2018;21:495–500. 链接1

[81] Shen A, Bailey CP, Ma AWK, Dardona S. UV-assisted direct write of polymerbonded magnets. J Magn Magn Mater 2018;462:220–5. 链接1

[82] Li L, Post B, Kunc V, Elliott AM, Paranthaman MP. Additive manufacturing of near-net-shape bonded magnets: prospects and challenges. Scr Mater 2017;135:100–4. 链接1

[83] Popov V, Koptyug A, Radulov I, Maccari F, Muller G. Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets. Proc Manuf 2018;21:100–8. 链接1

[84] Khazdozian HA, Manzano JS, Gandha K, Slowing II, Nlebedim IC. Recycled Sm–Co bonded magnet filaments for 3D printing ofmagnets. AIP Adv 2018;8(5):056722. 链接1

[85] Palmero EM, Rial J, de Vicente J, Camarero J, Skårman B, Vidarsson H, et al. Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies. Sci Technol Adv Mater 2018;19(1):465–73. 链接1

[86] White EMH, Kassen AG, Simsek E, Tang W, Ott RT, Anderson IE. Net shape processing of alnico magnets by additive manufacturing. IEEE Trans Magn 2017;53(11):1–6. 链接1

[87] Cullity BD, Graham CD. Introduction to magnetic materials. Piscataway: Wiley-IEEE Press; 2008. 链接1

[88] Xia W, He Y, Huang H, Wang H, Shi X, Zhang T, et al. Initial irreversible losses and enhanced high-temperature performance of rare-earth permanent magnets. Adv Funct Mater 2019;24:19000690. 链接1

相关研究