期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2018.12.011

ThMn12型永磁合金

a Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

b BCMaterials, UPV/EHU Science Park, Leioa 48940, Spain

c NCSR Demokritos, Agia Paraskevi 15341, Greece

收稿日期: 2018-07-16 修回日期: 2018-10-10 录用日期: 2018-12-07 发布日期: 2020-02-27

下一篇 上一篇

摘要

具有四方ThMn12型结构的富铁化合物有潜力满足当下人们对于高磁能积、工作温度为150~200 ℃的贫稀土永磁体的需求。尽管磁体制备技术的发展滞后于相关磁性材料的研究是正常的,但对于ThMn12型磁性材料而言,这种研究进展的差异非常显著。近年来,随着以含少量结构稳定元素(如SmFe11V或Sm0.8Zr0.2Fe9.2Co2.3Ti0.5)或者不含该类元素的材料(如SmFe9.6Co2.4薄膜)为基础所合成的具有优异内禀磁性化合物研究的突破,这一差距进一步扩大。在日益强大的理论计算的帮助下,人们对于理想的化合物的探寻从未停步。遗憾的是,基于聚合物键合填隙改性粉末的磁体的研究仍然处于边缘阶段。人们发现,引入镧(La)可以提高Sm(Fe,Ti)12中少数低熔点相的稳定性,从而首次使得液相烧结成为可能。然而,La金属的高反应活性会明显地破坏材料的矫顽力(Hc)。最初被抑制的ThMn12型相的可控结晶使得“块状”磁硬化成为可能,这不仅在Sm-Fe-V合金中可以实现(自20世纪90年代便为人所知),并且在添加La的(Ce,Sm)(Fe,Ti)12合金中也可以实现。然而,块状硬化所得的合金的性能仍然不能令人满意。机械化学合成的(Sm,Zr)(Fe,Si)12和(Sm,Zr)(Fe,Co,Ti)12粉末可能适合烧结成具有高强度的全致密磁体,尽管在此之前,两者都已开发出较高的各向异性,而后一种合金已开发出较高的矫顽力。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Hirosawa S. Permanent magnets beyond Nd–Dy–Fe–B. JOM 2015;67 (6):1304–5. 链接1

[ 2 ] Nassar NT, Du X, Graedel TE. Criticality of the rare earth elements. J Industr Ecol 2015;19(6):1044–54. 链接1

[ 3 ] Buschow KHJ. Permanent magnet materials based on tetragonal rare earth compounds of the type RFe12–xMx. J Magn Magn Mater 1991;100(1–3):79–89. 链接1

[ 4 ] Bacmann M, Baudelet C, Fruchart D, Gignoux D, Hlil EK, Krill G, et al. Exchange interactions and magneto-crystalline anisotropy in RFe12–xMx and parent interstitial compounds. J Alloys Compd 2004;383(1–2):166–72. 链接1

[ 5 ] Wang YZ, Hadjipanayis GC. Magnetic properties of Sm–Fe–Ti–V alloys. J Magn Magn Mater 1990;87(3):375–8. 链接1

[ 6 ] Schultz L, Schnitzke K, Wecker J. High coercivity in mechanically alloyed Sm– Fe–V magnets with a ThMn12 crystal structure. Appl Phys Lett 1990;56 (9):868–70. 链接1

[ 7 ] Yang J, Mao W, Yang Y, Ge S, Zhao Z, Li F. Nitrogenation of the magnetic compound R(Fe, M)12. J Appl Phys 1998;83(4):1983–7. 链接1

[ 8 ] Wang Y, Hadjipanayis GC, Kim A, Liu NC, Sellmyer DJ. Magnetic and structural studies in Sm–Fe–Ti magnets. J Appl Phys 1990;67(9): 4954–6. 链接1

[ 9 ] Ke L, Johnson DD. Intrinsic magnetic properties in R(Fe1–x, Cox)11TiZ (R = Y and Ce; Z = H, C, and N). Phys Rev B 2016;94(2):024423. 链接1

[10] Körner W, Krugel G, Elsässer C. Theoretical screening of intermetallic ThMn12- type phases for new hard-magnetic compounds with low rare earth content. Sci Rep 2016;6(1):24686. 链接1

[11] Fukazawa T, Akai H, Harashima Y, Miyake T. First-principles study of intersite magnetic couplings in NdFe12 and NdFe12X (X = B, C, N, O, F). J Appl Phys 2017;122(5):053901. 链接1

[12] Delange P, Biermann S, Miyake T, Pourovskii L. Crystal-field splittings in rareearth-based hard magnets: an ab initio approach. Phys Rev B 2017;96 (15):155132. 链接1

[13] Harashima Y, Fukazawa T, Kino H, Miyake T. Effect of R-site substitution and pressure on stability of RFe12: a first-principles study. J Appl Phys 2018;124 (16):163902. 链接1

[14] Harashima Y, Terakura K, Kino H, Ishibashi S, Miyake T. First-principles study on stability and magnetism of NdFe11M and NdFe11MN for M = Ti, V, Cr, Mn, Fe Co, Ni, Cu, Zn. J Appl Phys 2016;120(20):203904. 链接1

[15] Skelland C, Ostler T, Westmoreland SC, Evans RFL, Chantrell RW, Yano M, et al. Probability distribution of substituted titanium in RT12 (R = Nd and Sm; T = Fe and Co) structures. IEEE Trans Magn 2018;54(11):1–5. 链接1

[16] Cadieu FJ, Hegde H, Navarathna A, Rani R, Chen K. High-energy product ThMn12 Sm–Fe–T and Sm-Fe permanent magnets synthesized as oriented sputtered films. Appl Phys Lett 1991;59(7):875–7. 链接1

[17] Hirayama Y, Takahashi YK, Hirosawa S, Hono K. NdFe12Nx hard-magnetic compound with high magnetization and anisotropy field. Scr Mater 2015;95:70–2. 链接1

[18] Sato T, Ohsuna T, Yano M, Kato A, Kaneko Y. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer. J Appl Phys 2017;122(5):053903. 链接1

[19] Hirayama Y, Takahashi YK, Hirosawa S, Hono K. Intrinsic hard magnetic properties of Sm(Fe1–xCox)12 compound with the ThMn12 structure. Scr Mater 2017;138:62–5. 链接1

[20] Grössinger R, Krewenka R, Sun XK, Eibler R, Kirchmayr HR, Buschow KHJ. Magnetic phase transitions and magnetic anisotropy in Nd2Fe14–xCoxB compounds. J Less Common Met 1986;124(1–2):165–72. 链接1

[21] Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys 1986;59(3):873–9. 链接1

[22] Fukuda Y, Fujita A, Shimotomai M. Magnetic properties of monocrystalline Nd2(Fe,Co,Ni)14B. J Alloys Compd 1993;193(1–2):256–8. 链接1

[23] Suzuki S, Kuno T, Urushibata K, Kobayashi K, Sakuma N, Washio K, et al. A (Nd, Zr)(Fe,Co)11.5Ti0.5Nx compound as a permanent magnet material. AIP Adv 2014;4(11):117131. 链接1

[24] Suzuki S, Kuno T, Urushibata K, Kobayashi K, Sakuma N, Washio K, et al. A new magnet material with ThMn12 structure: (Nd1–xZrx)(Fe1–yCoy)11+zTi1–zNa (a = 0.6–1.3). J Magn Magn Mater 2016;401:259–68. 链接1

[25] Gabay AM, Hadjipanayis GC. Recent developments in RFe12-type compounds for permanent magnets. Scr Mater 2018;154:284–8. 链接1

[26] Hagiwara M, Sanada N, Sakurada S. Effect of Y substitution on the structural and magnetic properties of Sm(Fe0.8Co0.2)11.4Ti0.6. J Magn Magn Mater 2018;465:554–8. 链接1

[27] Tozman P, Sepehri-Amin H, Takahashi YK. Hirosawa S, Hono K. Intrinsic magnetic properties of Sm(Fe1–xCox)11Ti and Zr-substituted Sm1–yZry(Fe0.8Co0.2)11.5Ti0.5 compounds with ThMn12 structure toward the development of permanent magnets. Acta Mater 2018;153:354–63. 链接1

[28] Kuno T, Suzuki S, Urushibata K, Kobayashi K, Sakuma N, Yano M, et al. (Sm,Zr) (Fe,Co)11.0–11.5Ti1.0–1.5 compounds as new permanent magnet materials. AIP Adv 2016;6(2):025221. 链接1

[29] Ogawa D, Xu XD, Takahashi YK, Ohkubo T, Hirosawa S, Hono K. Emergence of coercivity in Sm(Fe0.8Co0.2)12 thin films via eutectic alloy grain boundary infiltration. Scr Mater 2019;164:140–4. 链接1

[30] Nakagawa R, Doi M, Shima T. Effect of nonmagnetic cap layers for Nd–Fe–B thin films with small addition of rare-earth element. IEEE Trans Magn 2015;51 (11):2104904. 链接1

[31] Wang YZ, Hadjipanayis GC. Effect of nitrogen on the structural and magnetic properties of intermetallic compounds with the ThMn12 structure. J Appl Phys 1991;70(10):6009–11. 链接1

[32] Yang J, Dong S, Yang Y, Cheng B. Structural and magnetic properties of RFe10.5V1.5Nx. J Appl Phys 1994;75(6):3013–6. 链接1

[33] Fu JB, Yu X, Qi ZQ, Yang WY, Liu SQ, Wang CS, et al. Magnetic properties of Nd (Fe1–xCox)10.5M1.5 (M = Mo and V) and their nitrides. AIP Adv 2017;7 (5):056202. 链接1

[34] Zhou C, Pinkerton FE, Herbst JF, inventors; GM Global Technology Operations LLC, assignee. Cerium-iron-based magnetic compounds. United States patent US201313786807. 2017 Jan 17.

[35] Kobayashi K, Suzuki S, Kuno T, Urushibata K, Sakuma N, Yano M, et al. The stability of newly developed (R,Zr)(Fe,Co)12–xTix alloys for permanent magnets. J Alloys Compd 2017;694:914–20. 链接1

[36] Gabay AM, Hadjipanayis GC. ThMn12-type structure and uniaxial magnetic anisotropy in ZrFe10Si2 and Zr1–xCexFe10Si2 alloys. J Alloys Compd 2016;657:133–7. 链接1

[37] GjokaM, Psycharis V, Devlin E, Niarchos D, Hadjipanayis G. Effect of Zr substitution on the structural and magnetic properties of the series Nd1–xZrxFe10Si2 with the ThMn12 type structure. J Alloys Compd 2016;687:240–5. 链接1

[38] Gabay AM, Cabassi R, Fabbrici S, Albertini F, Hadjipanayis GC. Structure and permanent magnet properties of Zr1–xRxFe10Si2 alloys with R = Y, La, Ce, Pr and Sm. J Alloys Compd 2016;683:271–5. 链接1

[39] Sugimoto S, Shimono T, Nakamura H, Kagotani T, Okada M, Homma M. Magnetic properties and microstructures of the (SmFe10V2)1–x–(Sm2Fe17)x cast alloys. Mater Chem Phys 1995;42(4):298–301. 链接1

[40] Zhou C, Pinkerton FE, Herbst JF. Magnetic properties of CeFe11–xCoxTi with ThMn12 structure. J Appl Phys 2014;115(17):17C716. 链接1

[41] Su MZ, Liu SF, Qian XL, Lin JH. An alternative approach to the finely crystalline powder of rare earth-transition metal alloys. J Alloys Compd 1997;249(1– 2):229–33. 链接1

[42] Gabay AM, Martín-Cid A, Barandiaran JM, Salazar D, Hadjipanayis GC. Lowcost Ce1–xSmx(Fe,Co,Ti)12 alloys for permanent magnets. AIP Adv 2016;6 (5):056015. 链接1

[43] Gabay AM, Hadjipanayis GC. Mechanochemical synthesis of magnetically hard anisotropic RFe10Si2 powders with R representing combinations of Sm, Ce and Zr. J Magn Magn Mater 2017;422:43–8. 链接1

[44] Fischbacher J, Kovacs A, Gusenbauer M, Oezelt H, Exl L, Bance S, et al. Micromagnetics of rare-earth efficient permanent magnets. J Phys D Appl Phys 2018;51(19):193002. 链接1

相关研究