期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.01.008

极端条件下材料化学和输运性质的第一原理研究

a Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
b Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

收稿日期: 2018-06-30 修回日期: 2018-08-23 录用日期: 2019-01-16 发布日期: 2019-03-28

下一篇 上一篇

摘要

地球是一个动态系统。从常温常压到地核的360 GPa 和6600 K,地球的热力学状态随着深度的变化而发生很大变化。因此,地球成分(如硅酸盐和碳酸盐矿物)的物理和化学性质受其所处环境的显著影响。在过去的30 年中,在极端条件下的材料表征的实验技术和理论模拟方法都取得了巨大的进步。这些进步提升了我们对矿物特性的理解,这对于充分认识这个星球的形成及其生命起源至关重要。本文回顾了用于预测极端条件下材料性质的最新计算技术,本研究仅限于应用第一原理分子动力学(first principle molecular dynamics, FPMD)方法研究与地球科学相关的化学和热力学输运过程。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Atlas Ovscura [Internet]. Kola superdeep borehole. [cited 2018 Aug 23], Available from: https://www.atlasobscura.com/places/kola-superdeep-borehole.

[ 2 ] Williamson ED, Adams LH. Density distribution in the Earth. J Wash Acad Sci 1923;13:413–28. 链接1

[ 3 ] Price GD, editor. Treatise on geophysics: mineral physics. Amsterdam: Elsevier; 2015. 链接1

[ 4 ] Pauling L. The nature of the chemical bond. 3rd ed. Ithaca: Cornell University Press; 1960. 链接1

[ 5 ] O’Keeffe M, Navrotsky A, editors. Structure and bonding in crystals, vol. 2. Cambridge: Academic Press; 1981. 链接1

[ 6 ] D’Ariano GM, Chiribella G, Perinotti P. Quantum theory from first principles: an informational approach. Cambridge: Cambridge University Press; 2017. 链接1

[ 7 ] Cohen ML, Louie SG. Fundamental of condensed matter physics. Cambridge: Cambridge University Press; 2016. 链接1

[ 8 ] McQuarrie DA. Statistical mechanics. Sausalito: University Science Book; 2000. 链接1

[ 9 ] Verlet L. Computer ‘‘experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones Molecule. Phys Rev 1967;159(1):98–103. 链接1

[10] Verlet L. Computer, ‘‘experiments” on classical fluids. II. Equilibrium correlation functions. Phys Rev 1968;165(1):201–14. 链接1

[11] Levesque D, Verlet L. Molecular dynamics calculations of transport coefficients. Mol Phys 1987;61(1):143–59. 链接1

[12] Ciccotti G, editor. Molecular-dynamics simulation of statistical-mechanical systems. North-Holland: Amsterdam; 1986. p. 424–76. 链接1

[13] Van Beest BWH, Kramer GJ, van Santen R. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 1990;64 (16):1955–8. 链接1

[14] Tsuneyuki S, Tsukada M, Aoki H, Matsui Y. First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 1988;61 (7):869–72. 链接1

[15] Tse JS, Klug DD. The structure and dynamics of silica polymorphs using a twobody effective potential. J Chem Phys 1991;95(12):9176–85. 链接1

[16] Vocˇadlo L, Patel A, Price GD. Molecular dynamics: some recent developments in classical and quantum mechanical simulation of minerals. Mineral Mag 1995;59(397):597–605. 链接1

[17] Martin RM. Electronic structure: basic theory and practical methods. Cambridge: Cambridge University Press; 2004. 链接1

[18] Hohenberg P, Kohn W. Homogeneous electron gas. Phys Rev 1964;136 (3B):864–71. 链接1

[19] Sham LJ, Kohn W. One-particle properties of an inhomogeneous interacting electron gas. Phys Rev 1966;145(2):561–6. 链接1

[20] Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980;45(7):566–9. 链接1

[21] Perdew JP, Schmidt K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 2001;577:1–19. 链接1

[22] Sun J, Ruzsinszky A, Perdew JP. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett 2015;115(3):036402. 链接1

[23] Peng H, Yang Z, Perdew JP, Sun J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys Rev X 2016;6 (4):041005. 链接1

[24] Feynman RP. Forces in molecules. Phys Rev 1939;56(4):340–2. 链接1

[25] Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 1992;64(4):1045–97. 链接1

[26] Marx D, Hutter J. Ab initio molecular dynamics. Cambridge: Cambridge University Press; 2009. 链接1

[27] Tuckerman ME. Statistical mechanics: theory and molecular simulation. Oxford: Oxford University Press; 2010. 链接1

[28] Ladd AJC, Moran B, Hoover WG. Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys Rev B Condens Matter 1986;34(8):5058–64. 链接1

[29] Du X, Tse JS. Oxygen packing fraction and the structure of silicon and germanium oxide glasses. J Phys Chem B 2017;121(47):10726–32. 链接1

[30] Du X, Wang Z, Wang H, Iitaka T, Pan Y, Wang H, et al. Structures and stability of iron halides at the Earth’s mantle and core pressures: implication for the missing halogen paradox. ACS Earth Space Chem 2018;2(7):711–9. 链接1

[31] Yong X, Tse JS, Chen J. Mechanism of chemical reactions between SiO2 and CO2 under mantle conditions. ACS Earth Space Chem 2018;2(6):548–55. 链接1

[32] Futera Z, Yong X, Pan Y, Tse JS, English NJ. Formation and properties of water from quartz and hydrogen at high pressure and temperature. Earth Planet Sci Lett 2017;461:54–60. 链接1

[33] Du X, Wu M, Tse JS, Pan Y. Structures and transport properties of CaCO3 melts under Earth’s mantle conditions. ACS Earth Space Chem 2018;2(1):1–8. 链接1

[34] Tse JS, English NJ, Yin K, Iitaka T. Thermal conductivity of solids from firstprinciples molecular dynamics calculations. J Phys Chem C 2018;122 (20):10682–90. 链接1

[35] Zeidler A, Salmon PS, Skinner LB. Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions. Proc Natl Acad Sci USA 2014;111(28):10045–8. 链接1

[36] Wu M, Liang Y, Jiang JZ, Tse JS. Structure and properties of dense silica glass. Sci Rep 2012;2:398. 链接1

[37] Gibbs GV, Wang D, Hin C, Ross NL, Cox DF, Crawford TD, et al. Properties of atoms under pressure: bonded interactions of the atoms in three perovskites. J Chem Phys 2012;137(16):164313. 链接1

[38] Bader RFW. Atoms in molecules: a quantum theory. New York: Oxford University Press; 1990. 链接1

[39] Wu M, Tse JS, Wang SY, Wang CZ, Jiang JZ. Origin of pressure-induced crystallization of Ce75Al25 metallic glass. Nat Commun 2015;6:6493. 链接1

[40] Oganov AR. Modern methods of crystal structure prediction. Hoboken: WileyVCH; 2011. 链接1

[41] Zhang L, Wang Y, Lv J, Ma Y. Materials discovery at high pressures. Nat Rev Mater 2017;2(4):17005. 链接1

[42] Wang Y, Lv J, Zhu L, Ma Y. Crystal structure prediction via particle-swarm optimization. Phys Rev B Condens Matter Mater Phys 2010;82(9):094116. 链接1

[43] Santoro M, Gorelli F, Haines J, Cambon O, Levelut C, Garbarino G. Silicon carbonate phase formed from carbon dioxide and silica under pressure. Proc Natl Acad Sci USA 2011;108(19):7689–92. 链接1

[44] Woodward RB, Hoffman R. The conservation of orbital symmetry. Cambridge: Academic Press; 1971. 链接1

[45] Shinozaki A, Kagi H, Noguchi N, Hirai H, Ohfuji H, Okada T, et al. Formation of SiH4 and H2O by the dissolution of quartz in H2 fluid under high pressure temperature. Am Mineral 2014;99(7):1265–9. 链接1

[46] Van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 2001;105(41):9396–409. 链接1

[47] Van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA. ReaxFFsio reactive force field for silicon and silicon oxide systems. J Phys Chem A 2003;107(19):3803–11. 链接1

[48] Schwegler E, Galli G, Gygi F, Hood RQ. Dissociation of water under pressure. Phys Rev Lett 2001;87(26):265501. 链接1

[49] Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C, Shen G, et al. Ultralow viscosity of carbonate melts at high pressures. Nat Commun 2014;5(1):5091. 链接1

[50] Stackhouse S, Stixrude L. Theoretical methods for calculating the lattice thermal conductivity of minerals. Rev Mineral Geochem 2010;71 (1):253–69. 链接1

[51] Marcolongo A, Umari P, Baroni S. Microscopic theory and quantum simulation of atomic heat transport. Nat Phys 2016;12(1):80–4. 链接1

[52] Kinaci A, Haskins JB, Çag˘ın T. On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics. J Chem Phys 2012;137 (1):014106. 链接1

[53] Tang X, Dong J. Lattice thermal conductivity of MgO at conditions of Earth’s interior. Proc Natl Acad Sci USA 2010;107(10):4539–43. 链接1

[54] Dalton DA, Hsieh WP, Hohensee GT, Cahill DG, Goncharov AF. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci Rep 2013;3(1):2400. 链接1

[55] Imada S, Ohta K, Yagi T, Hirose K, Yoshida H, Nagahara H. Measurements of lattice thermal conductivity of MgO to core mantle boundary pressures. Geophys Res Lett 2014;41(13):4542–7. 链接1

[56] Reissland JA. The physics of phonon. Hoboken: Wiley; 1973. 链接1

[57] Speziale S, Zha CS, Duffy TS, Hemley RJ, Mao HK. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure– volume–temperature equation of state. J Geophys Res 2001;106(B1):515–28. 链接1

[58] Hu Y, Wu Z, Dera PK, Bina CR. Thermodynamic and elastic properties of pyrope at high pressure and high temperature by first-principles calculations. J Geophys Res Solid Earth 2016;121(9):6462–76. 链接1

[59] Martorell B, Vocadlo L, Brodholt J, Wood IG. Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions. Science 2013;342 (6157):466–8. 链接1

[60] Parrinello M, Rahman A. Strain fluctuations and elastic constants. J Chem Phys 1982;76(5):2662–6. 链接1

[61] Sprik M, Impey RW, Klein ML. Second-order elastic constants for the LennardJones solid. Phys Rev B Condens Matter 1984;29(8):4368–74. 链接1

[62] Tse JS, Klug DD. Mechanical instability of a-quartz: a molecular dynamics study. Phys Rev Lett 1991;67(25):3559–62. 链接1

相关研究