期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.01.009

燃料/发动机系统的发展——实现可持续运输的途径

a Imperial College London, London, SW7 2AZ, UK
b University of Oxford, Oxford OX1 2JD, UK
c Saudi Aramco, Dhahran 31311, Saudi Arabia

收稿日期: 2018-06-20 修回日期: 2019-01-24 录用日期: 2019-01-25 发布日期: 2019-06-10

下一篇 上一篇

摘要

全球对运输能源的需求巨大且不断增长,主要由在内燃机(ICE)中燃烧的石油衍生液体燃料来满足。此外,未来对航空燃油和柴油需求的增长速度预计将快于对汽油的需求,可能会使低辛烷值汽油更容易获得。许多重大措施力争发展电池电动汽车(BEV)和燃料电池作为内燃机汽车的替代品,并寻求如生物燃料和天然气等燃料作为传统液体燃料的替代燃料。然而,这些替代方案中的研究基础都非常薄弱,并且还要克服重大障碍从而快速自由地发展。因此,在未来几十年内,运输(特别是商业运输)将继续主要由燃用石油基液体燃料的内燃机提供动力。因此,只有通过改进内燃机才能确保交通运输的可承受性、能源安全,控制对温室气体(GHG)排放和空气质量的影响。实际上,内燃机在使用目前市场上燃料的同时,通过改进燃烧系统、控制系统和后处理系统,以及在部分电气化混动辅助下将进一步得到改进。然而,通过改进燃料/ 发动机系统,内燃机依旧还有很多发展空间,可以使我们更多地利用制造燃料过程中的收益并使用易于获得的部件。如汽油压燃(GCI),可在压缩点火发动机中使用低辛烷值汽油,使汽油受压缩着火。与现代柴油发动机相比,GCI可以实现接近柴油机的效率,且在成本更低的情况下较易控制氮氧化物(NOx)和颗粒物的排放。按需辛烷值(OOD)还有助于优化燃料的抗爆性能,从而提高系统的整体效率。

参考文献

[ 1 ] The number of cars worldwide is set to double by 2040 [Internet]. San Francisco: World Economic Forum; c2019 [updated 2016 Apr 22; cited 2018 Jun 12]. Available from: https://www.weforum.org/agenda/2016/04/thenumber-of-cars-worldwide-is-set-to-double-by-2040.

[ 2 ] Exxon Mobil Corporation. 2017 outlook for energy: a view to 2040. Report. Irving: Exxon Mobil Corporation; 2017. 链接1

[ 3 ] World Energy Council. Global transport scenarios 2050. Report. London: World Energy Council; 2011. 链接1

[ 4 ] Organization of the Petroleum Exporting Countries. 2013 world oil outlook. Report. Vienna: OPEC Secretariat; 2013. 链接1

[ 5 ] Sims R, Schaeffer R, Creutzig F, Cruz-Núñez X, D’Agosto M, Dimitriu D. Transport. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kdner S, Seyboth K, editors. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press; 2014. 链接1

[ 6 ] Food and Agriculture Organization of the United Nations. Key facts and findings [Internet]. Rome: FOA; c2019 [cited 2019 Mar 3]. Available from: http://www.fao.org/news/story/en/item/197623/icode/.

[ 7 ] US Energy Information Administration (EIA). International energy outlook 2016. Report. Washington, DC: EIA; 2016. 链接1

[ 8 ] Kalghatgi G. Is it really the end of internal combustion engines and petroleum in transport? Appl Energy 2018;225:965–74. 链接1

[ 9 ] BP p.l.c. Statistical review of world energy [Internet]. London: BP p.l.c.; c1996– 2019 [cited 2018 Jun 12]. Available from: https://www.bp.com/en/global/ corporate/energy-economics/statistical-review-of-world-energy/downloads. html.

[10] Kalghatgi G, Gosling C, Weir MJ. The outlook for transport fuels: part 1. Petrol Technol Quart 2016;Q1:23–31. 链接1

[11] Kalghatgi G, Gosling C, Weir MJ. The outlook for transport fuels: part 2. Petrol Technol Quart 2016;Q2:17–23. 链接1

[12] Kalghatgi G. The outlook for fuels for internal combustion engines. Int J Engine Res 2014;15(4):383–98. 链接1

[13] Kalghatgi G. Petroleum-based fuels for transport. J Auto Safe Energy 2015;6 (1):1–16. 链接1

[14] Kalghatgi G. Developments in engine combustion systems and implications for combustion science and future transport fuels. Proc Combust Inst 2015;35:101–15. 链接1

[15] Kalghatgi G. Fuel/engine interactions. Warrendale: SAE International; 2013. 链接1

[16] Richards P. Automotive fuels reference book. 3rd ed. Warrendale: SAE International; 2014. 链接1

[17] Stone R. Introduction to internal combustion engines. 4th ed. Basingstoke: Palgrave Macmillan; 2012. 链接1

[18] Heywood JB. Internal combustion engine fundamentals. New York: McGraw Hill Book Co.; 1988. 链接1

[19] Kalghatgi G. Auto-ignition quality of practical fuels and implications for fuel requirements of future SI and HCCI engines. SAE Technical Paper 2005:2005- 01-0239.

[20] Kalghatgi G. Knock onset, knock intensity, superknock and preignition in SI engines. Int J Engine Res 2018;19(1):7–20. 链接1

[21] Miles P. Potential of advanced combustion for fuel economy reduction in the light-duty fleet. In: Proceedings of the SAE High-Efficiency IC Engine Symposium; 2018 April 8–9; Detroit, MI, USA; 2018.

[22] US Driving Research and Innovation for Vehicle efficiency and Energy sustainability (DRIVE). Advanced combustion and emission control roadmap. Report. US DRIVE; 2018.

[23] US Nuclear Regulatory Commission (NRC). Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles [Internet]. Washington, DC: NRC; c2019 [cited 2018 Jun 17]. Available from: https://www.nap.edu/ read/21744/chapter/2#3.

[24] Sellnau M, Hoyer K, Moore W, Foster M, Sinnamon J, Klemm W. Advancement of GDCI engine technology for US 2025 CAFE and tier 3 emissions. SAE Technical Paper 2018:2018-01-0901.

[25] MAZDA. Skyaktiv technology [Internet]. Hiroshima: MAZDA; c2018 [cited 2018 Apr 8]. Available from: http://www.mazda.com/en/innovation/ technology/skyactiv/skyactiv-g/.

[26] Johnson T, Joshi A. Review of vehicle engine efficiency and emissions. SAE Int J Engines 2018;11(6):1307–30. 链接1

[27] Association for Emission Control by catalysts (AECC). Gasoline particulate filter (GPF)—how can the GPF cut emissions of ultrafine particles from gasoline engines? Report. Brussels: AECC; 2017. 链接1

[28] Kufferath A, Krüger M, Naber D, Mailänder E, Maier R. The path to a negligible NO2 emission contribution from the diesel powertrain. Detroit: Crain Communications, Inc.; [cited 2018 May 22]. Available from: http://www. autonews.com/assets/pdf/bosch-nox-report.pdf.

[29] Chow E, Heywood J, Speth R. Benefits of a higher octane standard gasoline for the US light-duty vehicle fleet. SAE Technical Paper 2014:2014-01-1961.

[30] Mittal V, Heywood JB. The shift in relevance of fuel RON and MON to knock onset in modern SI engines over the last 70 years. SAE Int J Engines 2010;2 (2):1–10. 链接1

[31] Kalghatgi G, Head R, Chang J, Viollet Y, Babiker H, Amer A. An alternative method based on toluene/n-heptane surrogate fuels for rating the anti-knock quality of practical gasolines. SAE Int J Fuel Lubr 2014;7(3):663–72. 链接1

[32] Fuel additives: uses and benefits [Internet]. Technical Committee of Petroleum Additive Manufacturers (ATC); [cited 2018 Jun 20]. Available from: https:// www.atc-europe.org/public/Doc113%202013-10-01.pdf.

[33] Kalghatgi G, Johansson B. Gasoline compression ignition (GCI) approach to efficient, clean, affordable future engines. Proc Inst Mech Eng 2018;232 (1):118–38. 链接1

[34] Dec JE. Advanced compression ignition engines—understanding the incylinder processes. Proc Combust Inst 2009;32(2):2727–42. 链接1

[35] Kamimoto T, Bae M. High combustion temperature for the reduction of particulate in diesel engines. SAE Technical Paper 1988:880423.

[36] Kalghatgi G, Hildingsson L, Harrison AJL, Johansson B. Surrogate fuels for premixed combustion in compression ignition engines. Int J Engine Res 2011;12(5):452–65. 链接1

[37] Kalghatgi G, Risberg P, Ångström HE. Advantages of a fuel with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Technical Paper 2006:2006-01-3385.

[38] Kalghatgi G, Risberg, P, Ångström HE. Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel. SAE Technical Paper 2007:2007-01-0006.

[39] Manente V, Johansson B, Canella W. Gasoline partially premixed combustion, the future of internal combustion engines? Int J Engine Res 2011;12 (3):194–208. 链接1

[40] Hanson R, Splitter D, Reitz R. Operating a heavy-duty direct-injection compression-ignition engine with gasoline for low emissions. SAE Technical Paper 2009:2009-01-1442.

[41] Cracknell RJ, Rickeard DJ, Ariztegui J, Rose KD, Meuther M, Lamping M, et al. Advanced combustion for low emissions and high efficiency: part 2—impact of fuel properties on HCCI combustion. SAE Technical Paper 2008:2008-01- 2404.

[42] Wang B, Wang Z, Shuai S, Xu H. Combustion and emission characteristics of multiple premixed compression ignition (MPCI) mode fuelled with different low octane gasolines. Appl Energy 2015;160:769–76. 链接1

[43] Weall AJ, Collings N. Investigation into partially premixed combustion in a light duty multi cylinder diesel engine fueled with a mixture of gasoline and diesel. SAE Technical Paper 2007:2007-01-4058.

[44] Zhang F, Zeraati Rezaei S, Xu H, Shuai S. Experimental investigation of different blends of diesel and gasoline (dieseline) in a CI engine. SAE Int J Engines 2014;7(4):1920–30. 链接1

[45] Chang J, Viollet Y, Amer A, Kalghatgi G. Fuel economy potential of partially premixed compression ignition (PPCI) combustion with naphtha fuel. SAE Technical Paper 2013:2013-01-2701.

[46] Sellnau M, Foster M, Hoyer K, Moore W, Sinnamon J, Husted H. Development of a gasoline direct-injection compression ignition (GDCI) engine. SAE Int J Engines 2014;7(2):835–51. 链接1

[47] Chang J, Kalghatgi G, Amer A, Adomeit P, Rohs H, Heuser B. Vehicle demonstration of naphtha fuel achieving both high efficiency and drivability with EURO6 engine-out NOx emission. SAE Int J Engines 2013;6(1):101–19. 链接1

[48] Kalghatgi G, Gurubaran K, Davenport A, Harrison AJ, Taylor AKMF, Hardalupas Y. Some advantages and challenges of running a EuroIV, V6 diesel engine on a gasoline fuel. Fuel 2013;108:197–207. 链接1

[49] Lu Z, Han J, Wang M, Cai H, Sun P, Dieffenthaler D, et al. Well-to-wheels analysis of the greenhouse gas emissions and energy use of vehicles with gasoline compression ignition engines on low octane gasoline-like fuel. SAE Int J Fuel Lubr 2016;9(3):527–45. 链接1

[50] Hao H, Liu F, Liu Z, Zhao F. Compression ignition of low-octane gasoline: life cycle energy consumption and greenhouse gas emissions. Appl Energy 2016;181:391–8. 链接1

[51] Hildingsson L, Kalghatgi G, Tait N, Johansson B, Harrison A. Fuel octane effects in the partially premixed combustion regime in compression ignition engines. SAE Technical Paper 2009:2009-01-2648.

[52] Kalghatgi G, Hildingsson L, Johansson B, Harrison AJ. Low-NOx, low-smoke operation of a diesel engine using ‘‘premixed enough” compression ignition— effects of fuel autoignition quality, volatility and aromatic content. In: Proceedings of the THIESEL 2010, Thermo and Fluid Dynamic Processes in Diesel Engines; 2010 Sep 14–17; Valencia, Spain; 2010. 链接1

[53] Won HW, Pitsch H, Tait N, Kalghatgi G. Some effects of gasoline and diesel mixtures on partially premixed combustion and comparison with practical fuels, gasoline and diesel, in a diesel engine. Proc Inst Mech Eng 2012;226 (9):1259–70. 链接1

[54] Kolodziej C, Ciatti SA, Kodavasal J, Som S, Shidore N, Delhom J. Achieving stable engine operation of gasoline compression ignition using 87 AKI gasoline down to idle. SAE Technical Paper 2015:2015-01-0832.

[55] Viollet Y, Chang J, Kalghatgi G. Compression ratio and derived cetane number effects on gasoline compression ignition engine running with naphtha fuels. SAE Int J Fuel Lubr 2014;7(2):412–26. 链接1

[56] Zhang Y, Kumar P, Traver M, Cleary M, An experimental and computational investigation of gasoline compression ignition using conventional and higher reactivity gasolines in a multi-cylinder heavy-duty diesel engine. SAE Technical Paper 2018:2018-01-0226.

[57] Al-Abdullah MH, Kalghatgi G, Babiker H. Flash points and volatility characteristics of gasoline/diesel blends. Fuel 2015;153:67–9. 链接1

[58] Algunaibet I, Voice AK, Kalghatgi G, Babiker H. Flammability and volatility attributes of binary mixtures of some practical multi-component fuels. Fuel 2016;172:273–83. 链接1

[59] Xu H. Present and future of premixed compression ignition engines. Auto Safe Energy 2012;3(3):185–99. 链接1

[60] Redon F, Ciatti S. OPGCI: an evolution that revolutionizes the internal combustion engine [Internet]. San Diego: Achates Power, Inc.; c2018 [cited 2018 Jun 20]. Available from: http://achatespower.com/opgci-an-evolutionthat-revolutionizes-the-internal-combustion-engine/.

[61] Splitter D, Hanson R, Kokjohn S, Reitz R. Reactivity controlled compression ignition (RCCI) heavy-duty engine operation at mid-and high-loads with conventional and alternative fuels. SAE Technical Paper 2011:2011-01- 0363.

[62] Kaddatz J, Andrie M, Reitz R, Kokjohn S. Light-duty reactivity controlled compression ignition combustion using a cetane improver. SAE Technical Paper 2012:2012-01-1110.

[63] Nieman DE, Dempsey AB, Reitz R. Heavy-duty RCCI operation using natural gas and diesel. In: Proceedings of the SAE World Congress Experience 2012; 2012 Apr 24–26; Detroit, MI, USA; 2012. 链接1

[64] Splitter D, Reitz R, Hanson R. High efficiency, low emissions RCCI combustion by use of a fuel additive. SAE Int J Fuel Lubr 2010;3(2):742–56. 链接1

[65] Kokjohn SL, Hanson RM, Splitter DA, Reitz RD. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Engine Res 2011;12(3):209–26. 链接1

[66] Partridge RD, Weissman W, Ueda T, Iwashita Y, Johnson P, Kellogg G. Onboard gasoline separation for improved vehicle efficiency. SAE Int J Fuel Lubr 2014;7 (2):366–78. 链接1

[67] Kuzuoka K, Kurotani T, Chishima H, Kudo H. Study of high compression ratio engine combined with an ethanol gasoline fuel separation system. SAE Int J Engines 2014;7(4):1773–80. 链接1

[68] Chang J, Viollet Y, Alzubail A, Abdul-Manan A, Arfaj A. Octane-on-demand as an enabler for highly efficient spark ignition engines and improvement of greenhouse gas emissions. SAE Technical Paper 2015:2015-01-1264.

[69] Morganti KJ, Alzubail A, Al-Abdullah M, Viollet Y, Head R, Chang J, et al. Improving the efficiency of conventional spark-ignition engines using octaneon-demand combustion. Part I: engine studies. SAE Technical Paper 2016:2016- 01-0679.

[70] Morganti KJ, Alzubail A, Al-Abdullah M, Viollet Y, Head R, Chang J, et al. Improving the efficiency of conventional spark-ignition engines using octaneon-demand combustion. Part II: vehicle studies and life cycle analysis. SAE Technical Paper 2016:2016-01-0683.

[71] Morganti K, Al-Abdullah M, Alzubail A, Kalghatgi G, Viollet Y, Head R, et al. Synergistic engine-fuel technologies for light-duty vehicles: fuel economy and greenhouse gas emissions. Appl Energy 2017;208:1538–61. 链接1

[72] E-fuels too inefficient and expensive for cars and trucks, but may be part of aviation’s climate solution—study [Internet]. Brussels: Transport & Environment; [cited 2018 Apr 8]. Available from: https://www.transportenvironment. org/press/e-fuels-too-inefficient-and-expensive-cars-and-trucks-may-be-partaviations-climate-solution-%E2%80%93.

[73] Malins C. What role is there for electrofuel technologies in European transport’s low carbon future? Report. Brussels: Transport & Environment; 2017 Nov.

相关研究