期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.01.011

深古菌门的核心代谢功能和热环境起源

a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
b State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

收稿日期: 2018-07-01 修回日期: 2018-10-17 录用日期: 2019-01-16 发布日期: 2019-04-22

下一篇 上一篇

摘要

深古菌门具有复杂的亚群分类,是地球上丰度最高的微生物之一。然而,深古菌的代谢特征和演化历史仍然有待进一步研究。本研究对来自10个不同亚群的15个新获得和36个已经发表的深古菌基因组进行了比较基因组分析,揭示了深古菌门的核心代谢特征,即蛋白质、脂质、芳香族化合物降解,糖酵解途径和Wood–Ljungdahl (WL) 途径。上述核心代谢特征表明深古菌使用乙酰辅酶A作为重要的代谢中间物。此外,部分深古菌亚群还具有不完整的柠檬酸循环、产乙酸途径和硫化物相关的代谢潜能,表明不同亚群具有多样的代谢能力和生态功能。亚群Bathy-21和Bathy-22位于深古菌系统发育树根部,是目前已知最古老的两个深古菌亚群。它们广泛分布于热液(泉)环境中,并编码超嗜热适应性特征的标记基因逆促旋酶(reverse gyrase, rgy)。综上,本研究对深古菌门的核心代谢能力进行了系统性研究和总结,并揭示了深古菌热环境起源的演化历史。

补充材料

图片

图1

图2

参考文献

[ 1 ] Kubo K, Lloyd KG, Biddle JF, Amann R, Teske A, Knittel K. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J 2012;6(10):1949–65. 链接1

[ 2 ] Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant Archaea in marine sediments degrade detrital proteins. Nature 2013;496(7444):215–8. 链接1

[ 3 ] Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. Genetic and functional properties of uncultivated MCG Archaea assessed by metagenome and gene expression analyses. ISME J 2014;8(3):650–9. 链接1

[ 4 ] He Y, Li M, Perumal V, Feng X, Fang J, Xie J, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 2016;1 (6):16035. 链接1

[ 5 ] Xiang X, Wang R, Wang H, Gong L, Man B, Xu Y. Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci Rep 2017;7(1):45028. 链接1

[ 6 ] Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 2008;66 (2):181–96. 链接1

[ 7 ] Li Q, Wang F, Chen Z, Yin X, Xiao X. Stratified active archaeal communities in the sediments of Jiulong River estuary, China. Front Microbiol 2012;3:311. 链接1

[ 8 ] Zhou Z, Pan J, Wang F, Gu JD, Li M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 2018;42 (5):639–55. 链接1

[ 9 ] Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 2016;18(4):1200–11. 链接1

[10] Zhang W, Ding W, Yang B, Tian R, Gu S, Luo H, et al. Genomic and transcriptomic evidence for carbohydrate consumption among microorganisms in a cold seep brine pool. Front Microbiol 2016;7:1825. 链接1

[11] Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA 2018;115(23):6022–7. 链接1

[12] Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 2015;350(6259):434–8. 链接1

[13] Martin WF, Sousa FL, Lane N. Energy at life’s origin. Science 2014;344 (6188):1092–3. 链接1

[14] Fillol M, Auguet JC, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J 2016;10(3):665–77. 链接1

[15] Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for singlecell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28(11):1420–8. 链接1

[16] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357–9. 链接1

[17] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25(16):2078–9. 链接1

[18] Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165. 链接1

[19] Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol 2009;10(8):R85. 链接1

[20] Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013;31(6):533–8. 链接1

[21] Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25(7):1043–55. 链接1

[22] Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 2016;7(1):13219. 链接1

[23] Dombrowski N, Seitz KW, Teske AP, Baker BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 2017;5(1):106. 链接1

[24] Butterfield CN, Li Z, Andeer PF, Spaulding S, Thomas BC, Singh A, et al. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 2016;4:e2687. 链接1

[25] Jungbluth SP, Glavina del Rio T. Tringe SG, Stepanauskas R, Rappé MS. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. PeerJ 2017;5:e3134. 链接1

[26] Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2(11):1533–42. 链接1

[27] Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35(21):7188–96. 链接1

[28] Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the nextgeneration sequencing data. Bioinformatics 2012;28(23):3150–2. 链接1

[29] Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30(14):3059–66. 链接1

[30] Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 2014;30(9):1312–3. 链接1

[31] Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 2011;39(Suppl 2):W475–8. 链接1

[32] Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 2010;11(1):119. 链接1

[33] Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28(1):27–30. 链接1

[34] Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinf 2003;4(1):41. 链接1

[35] Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2014;42(D1):D503–9. 链接1

[36] Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42(D1):D490–5. 链接1

[37] Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ. Prediction of signal peptides in Archaea. Protein Eng Des Sel 2009;22(1):27–35. 链接1

[38] Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 2007;318(5855):1449–52. 链接1

[39] Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 2010;26(15):1910–2. 链接1

[40] Lazar CS, Biddle JF, Meador TB, Blair N, Hinrichs KU, Teske AP. Environmental controls on intragroup diversity of the uncultured benthic Archaea of the Miscellaneous Crenarchaeotal Group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA). Environ Microbiol 2015;17(7):2228–38. 链接1

[41] Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson MJ. Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta 1997;61 (24):5363–9. 链接1

[42] Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs KU. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta 2009;73(11):3323–36. 链接1

[43] Seyler LM, McGuinness LM, Kerkhof LJ. Crenarchaeal heterotrophy in salt marsh sediments. ISME J 2014;8(7):1534–43. 链接1

[44] Yu T, Liang Q, Niu M, Wang F. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. Environ Microbiol Rep 2017;9(4):374–82. 链接1

[45] Lever MA, Heuer VB, Morono Y, Masui N, Schmidt F, Alperin MJ, et al. Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiol J 2010;27(2):183–211. 链接1

[46] Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell 2010;40(2):253–66. 链接1

[47] Spang A, Caceres EF. Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 2017;357(6351):eaaf3883. 链接1

相关研究