期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.01.013

Kawai型碳化钨多面砧压机的压力突破

a Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany

b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

c Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China

收稿日期: 2018-07-08 修回日期: 2019-01-04 录用日期: 2019-01-28 发布日期: 2019-04-26

下一篇 上一篇

摘要

在众多领域中都需要扩大Kawai型碳化钨(tungsten carbide, WC)多面砧压机的压力范围,尤其是在地球科学领域。然而,40年来,在压力产生方面没有取得重大进展。我们最近的研究已经将采用碳化钨压砧的Kawai型多面砧压机的压力产生范围扩大到65 GPa,这是该装置高压产生范围的世界纪录,比传统压力产生范围增大了2.5倍以上。我们还成功地在高温下产生了约50 GPa的压力。本文回顾了我们最近发展的高压技术。室温和高温下高压的产生是通过以下技术的结合来实现的:①精确对准的滑块系统;②高硬度的二级压砧;③二级砧面锥形化;④由高体积模量材料组成的高压腔体;⑤炉体隔热性高。我们的高压技术将有助于研究在下地幔上部条件下材料的相稳定性和物理性质,并且能够合成和表征新材料。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Ito E. Theory and practice—multianvil cells and high-pressure experimental methods. In: Schubert G, Romanowicz B, Dziewonski A, editors. Treatise on geophysics 2. San Diego: Elsevier; 2007. p. 197–230. 链接1

[ 2 ] Ovsyannikov SV, Bykov M, Bykova E, Kozlenko DP, Tsirlin AA, Karkin AE, et al. Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nat Chem 2016;8(5):501–8. 链接1

[ 3 ] Keppler H, Frost D. Introduction to minerals under extreme conditions. In: Miletich R, editor. Mineral behavior at extreme conditions. Budapest: Eötvös University Press; 2005. p. 1–30. 链接1

[ 4 ] Fukao Y, Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J Geophys Res 2013;118 (11):5920–38. 链接1

[ 5 ] French SW, Romanowicz B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 2015;525(7567):95–9. 链接1

[ 6 ] Wang F, Tange Y, Irifune T, Funakoshi K. P–V–T equation of state of stishovite up to mid-lower mantle conditions. J Geophys Res 2012;117:B06209. 链接1

[ 7 ] Tange Y, Irifune T, Funakoshi K. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils. High Press Res 2008;28:245–54. 链接1

[ 8 ] Yamazaki D, Ito E, Yoshino T, Tsujino N, Yoneda A, Guo X, et al. Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Phys Earth Planet Inter 2014;228:262–7. 链接1

[ 9 ] Yamazaki D, Ito E, Yoshino T, Tsujino N, Yoneda A, Gomi H, et al. High-pressure generation in the Kawai-type multianvil apparatus equipped with tungstencarbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3. Comp Rend Geosci. In press. 链接1

[10] Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, et al. Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Rev Sci Instrum 2016;87:024501. 链接1

[11] Ishii T, Yamazaki D, Tsujino N, Xu F, Liu Z, Kawazoe T, et al. Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils. High Press Res 2017;37(4):507–15. 链接1

[12] Kunimoto T, Irifune T, Tange Y, Wada K. Pressure generation to 50 GPa in Kawai-type multianvil apparatus using newly developed tungsten carbide anvils. High Press Res 2016;36:1–8. 链接1

[13] Kawai N, Togaya M, Onodera A. A new device for pressure vessels. Proc Jpn Acad 1973;49(8):623–6. 链接1

[14] Ohtani E, Irifune T, Hibberson WO, Ringwood AE. Modified split-sphere guide block for practical operation of a multiple-anvil apparatus. High Temp High Press 1987;19(5):523–9. 链接1

[15] Walker D, Carpenter MA, Hitch CM. Some simplifications to multianvil devices for high pressure experiments. Am Miner 1990;75(9–10):1020–8. 链接1

[16] Osugi J, Shimizu K, Inoue K, Yasunami K. A compact cubic anvil high pressure apparatus. Rev Phys Chem Jpn 1964;34(1):1–6. 链接1

[17] Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda Y, et al. A largevolume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘‘SPEED-Mk.II”. Phys Earth Planet Inter 2004;143–144:497–506. 链接1

[18] Irifune T. Frontiers in deep earth mineralogy using new large-volume D-DIA and KMA apparatus. Rev High Press Sci Tech 2010;20(2):158–65. 链接1

[19] Kubo A, Ito E, Katsura T, Shinmei T, Yamada H, Nishikawa O, et al. In situ X-ray observation of iron using Kawai-type apparatus equipped with sintered diamond: absence of b phase up to 44 GPa and 2100 K. Geophys Res Lett 2003;30(3):1126. 链接1

[20] Irifune T, Adachi Y, Fujino K, Ohtani E, Yoneda A, Sawamoto H. A performance test for WC anvils for multianvil apparatus and phase transformations in some aluminous minerals up to 28 GPa. In: Syono Y, Manghnani MH, editors. Highpressure research: application to earth and planetary sciences. Washington, DC: American Geophysical Union; 1992. p. 43–50. 链接1

[21] Wada K. Tungsten carbide based hardmetals used for high pressure experiment. Rev High Press Sci Tech 2018;28(1):9–16. 链接1

[22] Mao HK, Bell PM. Generation of static pressures to 1.5 Mbar. Carnegie Inst Washington 1977;76:644–6. 链接1

[23] Ito E. The absence of oxide mixture in high-pressure phases of Mg-silicates. Geophys Res Lett 1977;4(2):72–4. 链接1

[24] Dunn KJ, Bundy FP. Materials and techniques for pressure calibration by resistance-jump transitions up to 500 kilobars. Rev Sci Instrum 1978;49 (3):365–70. 链接1

[25] Tange Y, Takahashi E, Funakoshi KI. In situ observation of pressure-induced electrical resistance changes in zirconium: pressure calibration points for the large volume press at 8 and 35 GPa. High Press Res 2011;31(3):413–8. 链接1

[26] Ono S, Kikegawa T. Determination of the phase boundary of the omega to beta transition in Zr using in situ high-pressure and high-temperature X-ray diffraction. J Solid State Chem 2015;225:110–3. 链接1

[27] Soga N, Anderson OL. High-temperature elastic properties of polycrystalline MgO and Al2O3. J Am Ceram Soc 1966;49:355–9. 链接1

[28] Liu Z, Nishi M, Ishii T, Fei H, Miyajima N, Ballaran TB, et al. Phase relations in the system MgSiO3–Al2O3 up to 2300 K at lower mantle pressures. J Geophys Res 2017;122(10):7775–88. 链接1

[29] Ishii T, Sinmyo R, Komabayashi T, Ballaran TB, Kawazoe T, Miyajima N, et al. Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: a possible indicator of shock conditions of meteorites. Am Miner 2017;102(9): 1947–52. 链接1

[30] Kubo A, Akaogi M. Post-garnet transitions in the system Mg4Si4O12– Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Inter 2000;121(1–2):85–102. 链接1

[31] Kubo A. High-pressure experimental study on garnet-perovskite transition in the system MgSiO3–Al2O3 [dissertation]. Tokyo: Gakushuin University; 1999. 链接1

[32] Tsuchiya T. First-principles prediction of the P–V–T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 2003;108:2462. 链接1

[33] Kingery WD, Francl J, Coble RL, Vasilos T. Thermal conductivity: X, data for several pure oxide materials corrected to zero porosity. J Am Ceram Soc 1954;37:107–10. 链接1

[34] Akaogi M, Ito E, Navrotsky A. Olivine-modified spinel-spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res 1989;94:15671–85. 链接1

[35] Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E. Adiabatic temperature profile in the mantle. Phys Earth Planet Inter 2010;183:212–8. 链接1

[36] Liu Z, Ishii T, Katsura T. Rapid decrease of MgAlO2.5 component in bridgmanite with pressure. Geochem Perspect Lett 2018;5:12–8. 链接1

[37] Wookey J, Kendall JM, Barruol G. Mid-mantle deformation inferred from seismic anisotropy. Nature 2002;415(6873):777–80. 链接1

相关研究