期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第4期 doi: 10.1016/j.eng.2019.01.016

基于DBN模型的激光焊接状态在线监控研究

a Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China

b Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan

收稿日期: 2018-07-09 修回日期: 2018-10-02 录用日期: 2019-01-10 发布日期: 2019-07-05

下一篇 上一篇

摘要

本文开发了集辅助激光成像系统、紫外/可见波段视觉成像系统(波长小于780 nm)、光谱测量仪、光电传感器的多传感器系统,用以观察和分析激光焊接过程中的焊接状态信息。本文采用小波包分解方法对通过光电传感器获得的可见光波段传感信号和激光反射传感信号进行分解并提取相关特征。光谱仪采集到的信号的主要波长为400~900 nm,将其分为25个子带并采用统计方法来提取光谱信号特征。利用紫外/可见波段视觉成像系统采集的图像获取金属蒸气和飞溅的特征,而辅助照明视觉传感器系统主要是用来采集匙孔特征。本文基于上述焊接过程的实时量化特征建立了焊接状态监测的深度信念网络(DBN),并采用遗传算法对所提出的DBN模型参数进行优化。与传统的反向传播神经网络(BPNN)模型相比,本文建立的DBN模型在焊接状态监测方面具有更高的精度和鲁棒性。最后,本文通过三个附加焊接试验验证了该方法在激光焊接状态监控中的有效性和泛化能力。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Wei PS, Chuang KC, Ku JS, DebRoy T. Mechanisms of spiking and humping in keyhole welding. IEEE Trans Compon Packag Manuf Technol 2012;2 (3):383–94. 链接1

[ 2 ] Atabaki MM, Yazdian N, Ma J, Kovacevic R. High power laser welding of thick steel plates in a horizontal butt joint configuration. Opt Laser Technol 2016;83:1–12. 链接1

[ 3 ] Zhang Y, Li FZ, Liang ZC, Ying YY, Lin QD, Wei HY. Correlation analysis of penetration based on keyhole and plasma plume in laser welding. J Mater Process Technol 2018;256:1–12. 链接1

[ 4 ] Pang SY, Chen X, Zhou JX, Shao XY, Wang CM. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt Lasers Eng 2015;74:47–58. 链接1

[ 5 ] Cho JH, Na SJ. Theoretical analysis of keyhole dynamics in polarized laser drilling. J Phys D Appl Phys 2007;40(24):7638–47. 链接1

[ 6 ] Zhang YX, Gao XD. Analysis of characteristics of molten pool using cast shadow during high-power disk laser welding. Int J Adv Manuf Technol 2014;70(9– 12):1979–88. 链接1

[ 7 ] Pang S, Chen X, Shao X, Gong S, Xiao J. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: local evaporation, plume swing and gas entrapment into porosity. Opt Lasers Eng 2016;82:28–40. 链接1

[ 8 ] Pang S, Chen X, Li W, Shao X, Gong S. Efficient multiple time scale method for modeling compressible vapor plume dynamics inside transient keyhole during fiber laser welding. Opt Laser Technol 2016;77:203–14. 链接1

[ 9 ] Zhang YX, Han SW, Cheon J, Na SJ, Gao XD. Effect of joint gap on bead formation in laser butt welding of stainless steel. J Mater Process Technol 2017;249:274–84. 链接1

[10] Li SC, Chen GY, Katayama S, Zhang Y. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding. Appl Surf Sci 2014;303:481–8. 链接1

[11] Bonaccorso F, Cantelli L, Muscato G. An arc welding robot control for a shaped metal deposition plant: modular software interface and sensors. IEEE Trans Ind Electron 2011;58(8):3126–32. 链接1

[12] Fang ZJ, Xu D, Tan M. A vision-based self-tuning fuzzy controller for fillet weld seam tracking. IEEE/ASME Trans Mechatron 2011;16(3):540–50. 链接1

[13] Gao XD, You DY, Katayama S. Seam tracking monitoring based on adaptive Kalman filter embedded Elman neural network during high-power fiber laser welding. IEEE Trans Ind Electron 2012;59(11):4315–25. 链接1

[14] Tsukamoto S. High speed imaging technique part 2—high speed imaging of power beam welding phenomena. Sci Technol Weld Join 2011;16(1):44–55. 链接1

[15] Kong FR, Ma JJ, Carlson B, Kovacevic R. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration. Opt Laser Technol 2012;44(7):2186–96. 链接1

[16] Lee SK, Kim HW, Na EW. Improvement of impact noise in a passenger car utilizing sound metric based on wavelet transform. J Sound Vibrat 2010;329 (17):3606–19. 链接1

[17] Kim HW, Lee SK, Na EW. Sound quality evaluation of the impact noise induced by road courses having an impact bar and speed bumps in a passenger car. Proc Inst Mech Eng Part D 2010;224(6):735–47. 链接1

[18] Liu H, Zhang J, Guo P, Bi F, Yu H, Ni G. Sound quality prediction for engineradiated noise. Mech Syst Signal Process 2015;56–57:277–87. 链接1

[19] Wang YS, Shen GQ, Xing YF. A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network. Mech Syst Signal Process 2014;45(1):255–66. 链接1

[20] Zhang YX, Gao XD, Katayama S. Weld appearance prediction with BP neural network improved by genetic algorithm during disk laser welding. J Manuf Syst 2015;34:53–9. 链接1

[21] Yin S, Ding SX, Haghani A, Hao HY, Zhang P. A comparison study of basic datadriven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J Process Contr 2012;22(9):1567–81. 链接1

[22] Yin S, Luo H, Ding SX. Real-time implementation of fault-tolerant control systems with performance optimization. IEEE Trans Ind Electron 2014;61 (5):2402–11. 链接1

[23] Hu YJ, Ling ZH. DBN-based spectral feature representation for statistical parametric speech synthesis. IEEE Signal Process Lett 2016;23(3):321–5. 链接1

[24] Huang HB, Li RX, Yang ML, Lim TC, Ding WP. Evaluation of vehicle interior sound quality using a continuous restricted Boltzmann machine-based DBN. Mech Syst Signal Process 2017;84(Pt A):245–67. 链接1

[25] Zou CR, Zhang XR, Zha C, Zhao L. A novel DBN feature fusion model for crosscorpus speech emotion recognition. J Electr Comput Eng 2016;2016:7437860. 链接1

[26] Zhang CL, He YG, Yuan LF, Xiang S. Analog circuit incipient fault diagnosis method using DBN based features extraction. IEEE Access 2018;6:23053–64. 链接1

[27] Mohamed A, Dahl GE, Hinton G. Acoustic modeling using deep belief networks. IEEE Trans Audio Speech Lang Process 2012;20(1):14–22. 链接1

[28] Zhang LX, Wu J. Deep belief networks based voice activity detection. IEEE Trans Audio Speech Lang Process 2013;21(4):697–710. 链接1

[29] Huang GB, Lee H, Learned ME. Learning hierarchical representations for face verification with convolutional deep belief networks. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2012 June 16–21; Providence, RI, USA. New York: IEEE; 2012. p. 2518–25. 链接1

[30] ISO 13919–1-1996: Welding—Electrons and laser beam welded joints— Guidance on quality levels for imperfections—Part I: steel. International standard. Geneva: International Organization for Standardization; 1996.

相关研究