期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第6期 doi: 10.1016/j.eng.2019.02.007

混凝土中碱硅反应效应的多尺度均质化分析

a Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA

b Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

收稿日期: 2018-08-28 修回日期: 2018-12-01 录用日期: 2019-02-20 发布日期: 2019-05-24

下一篇 上一篇

摘要

碱硅反应(ASR)是混凝土结构(如桥梁和水坝)在长期的高湿度环境下发生的主要劣化机制之一。ASR是骨料中活性硅成分与水泥浆中碱金属离子之间发生的一种化学反应。这种化学反应会产生ASR凝胶,该凝胶吸水后膨胀,造成混凝土损坏和开裂,最终导致混凝土力学性能下降。本研究基于晶格离散粒子模型(LDPM),研究了混凝土的ASR损伤。LDPM可在粗骨料尺度上模拟混凝土,它是一种中尺度力学模型。作者已经成功地利用LDPM框架对ASR建模,并且通过实验数据对所得模型ASR-LDPM进行了校准和验证。本研究将ASR-LDPM用作中尺度模型,并采用最新开发的多尺度均质化框架来模拟ASR的宏观尺度效应。作者首先分析了由ASR-LDPM模拟的混凝土代表性体积元(RVE)在拉伸和压缩两种情况下的均质化行为,并研究了ASR对混凝土有效力学性能的影响。接下来,作者利用已开发的均质化框架再现了关于混凝土棱柱体自由体积膨胀的实验数据。最后,作者通过中尺度模型和所提出的多尺度方法,评估了压缩和四点弯曲梁中棱柱体的强度退化现象,以分析后者的准确性和计算效率。在所有数值分析中,作者考虑了具有不同内部粒子划分的RVE大小,以探讨它们对均质化响应的影响。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

参考文献

[ 1 ] Giaccio G, Zerbino R, Ponce JM, Batic OR. Mechanical behavior of concretes damaged by alkali–silica reaction. Cement Concr Res 2008;38(7):993–1004. 链接1

[ 2 ] Saouma V, Xi Y. Literature review of alkali aggregate reactions in concrete dams. Technical report. Boulder: Department of Civil, Environmental, and Architectural Engineering, University of Colorado; 2004. Report No.: CU/SA-XI2004/001. 链接1

[ 3 ] Stanton TE. Expansion of concrete through reaction between cement and aggregate. Proc Am Soc Civ Eng 1940;66(10):1781–811. 链接1

[ 4 ] ASTM C1567–13: Standard test method for determining the potential alkali– silica reactivity of combinations of cementitious materials and aggregate (accelerated mortar-bar method). ASTM Standard. West Conshohocken: ASTM International; 2013. 链接1

[ 5 ] ASTM C1293–18a: Standard test method for determination of length change of concrete due to alkali–silica reaction. ASTM Standard. West Conshohocken: ASTM International; 2018. 链接1

[ 6 ] Bazˇant ZP, Zi G, Meyer C. Fracture mechanics of ASR in concretes with waste glass particles of different sizes. J Eng Mech 2000;126(3):226–32. 链接1

[ 7 ] Charlwood RG, Solymar SV, Curtis DD. A review of alkali aggregate reactions in hydroelectric plants and dams. In: Proceedings of the International Conference of Alkali–Aggregate Reactions in Hydroelectric Plants and Dams; 1992 Sep 28– Oct 2; Fredericton, NB, Canada; 1992. 链接1

[ 8 ] Thompson GA, Charlwood RG, Steele RR, Curtis D. Mactaquac generating station intake and spillway remedial measures. In: Proceedings for the Eighteenth International Congress on Large Dams; 1994 Nov 7–11; Durban, South Africa; 1994. p. 347–68. 链接1

[ 9 ] Léger P, Côté P, Tinawi R. Finite element analysis of concrete swelling due to alkali–aggregate reactions in dams. Comput Struc 1996;60(4):601–11. 链接1

[10] Herrador MF, Martínez-Abella F, del Hoyo Fernández-Gago R. Mechanical behavior model for ASR-affected dam concrete under service load: formulation and verification. Mater Struct 2009;42(2):201–12. 链接1

[11] Ulm FJ, Coussy O, Kefei L, Larive C. Thermo-chemo-mechanics of ASR expansion in concrete structures. J Eng Mech 2000;126(3):233–42. 链接1

[12] Fairbairn EMR, Ribeiro FLB, Lopes LE, Toledo-Filho RD, Silvoso MM. Modelling the structural behaviour of a dam affected by alkali–silica reaction. Commun Numer Methods Eng 2006;22(1):1–12. 链接1

[13] Larive C. Apports combinés de l’expérimentation et de la modélisation à la compréhension de l’alcali-réaction et de ses effets mécaniques [dissertation]. Paris: Ecole Nationale des Ponts et Chaussées; 1998. French. 链接1

[14] Saouma V, Perotti L. Constitutive model for alkali–aggregate reactions. ACI Mater J 2006;103(3):194–202. 链接1

[15] Multon S, Seignol JF, Toutlemonde F. Chemomechanical assessment of beams damaged by alkali–silica reaction. J Mater Civ Eng 2006;18(4):500–9. 链接1

[16] Comi C, Fedele R, Perego U. A chemo-thermo-damage model for the analysis of concrete dams affected by alkali–silica reaction. Mech Mater 2009;41 (3):210–30. 链接1

[17] Comi C, Perego U. Anisotropic damage model for concrete affected by alkali– aggregate reaction. Int J Damage Mech 2011;20(4):598–617. 链接1

[18] Poyet S, Sellier A, Capra B, Foray G, Torrenti JM, Cognon H, et al. Chemical modelling of alkali silica reaction: influence of the reactive aggregate size distribution. Mater Struct 2007;40(2):229–39. 链接1

[19] Bazˇant ZP, Rahimi-Aghdam S. Diffusion-controlled and creep-mitigated ASR damage via microplane model. I: mass concrete. J Eng Mech 2017;143 (2):04016108. 链接1

[20] Rahimi-Aghdam S, Bazˇant ZP, Caner FC. Diffusion-controlled and creepmitigated ASR damage via microplane model. II: material degradation, drying, and verification. J Eng Mech 2017;143(2):04016109. 链接1

[21] Capra B, Sellier A. Orthotropic modelling of alkali–aggregate reaction in concrete structures: numerical simulations. Mech Mater 2003;35(8):817–30. 链接1

[22] Cusatis G, Rezakhani R, Alnaggar M, Zhou X, Pelessone D. Multiscale computational models for the simulation of concrete materials and structures. In: Bicanic N, Mang H, Meschke G, de Borst R, editors. Computational modelling of concrete structures. London: CRC Press; 2014. p. 23–38. 链接1

[23] Alnaggar M, Cusatis G, Di Luzio G. Lattice discrete particle modeling (LDPM) of alkali silica reaction (ASR) deterioration of concrete structures. Cement Concr Compos 2013;41:45–59. 链接1

[24] Cusatis G, Pelessone D, Mencarelli A. Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory. Cement Concr Compos 2011;33 (9):881–90. 链接1

[25] Cusatis G, Mencarelli A, Pelessone D, Baylot J. Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation. Cement Concr Compos 2011;33(9):891–905. 链接1

[26] Alnaggar M, Liu M, Qu J, Cusatis G. Lattice discrete particle modeling of acoustic nonlinearity change in accelerated alkali silica reaction (ASR) tests. Mater Struct 2016;49(9):3523–45. 链接1

[27] Alnaggar M, Di Luzio G, Cusatis G. modeling time-dependent behavior of concrete affected by alkali silica reaction in variable environmental conditions. Materials (Basel) 2017;10(5):E471. 链接1

[28] Wu T, Temizer I, Wriggers P. Multiscale hydro-thermo-chemo-mechanical coupling: application to alkali–silica reaction. Comput Mater Sci 2014;84:381–95. 链接1

[29] Rezakhani R, Cusatis G. Generalized mathematical homogenization of the lattice discrete particle model. In: Van Mier JGM, Ruiz G, Andrade C, Yu RC, Zhang XX, editors. Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS 2013; 2013 Mar 11– 14; Toledo, Spain. p. 261–71. 链接1

[30] Rezakhani R, Cusatis G. Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials. J Mech Phys Solids 2016;88:320–45. 链接1

[31] Rezakhani R, Zhou X, Cusatis G. Adaptive multiscale homogenization of the lattice discrete particle model for the analysis of damage and fracture in concrete. Int J Solids Struct 2017;125:50–67. 链接1

[32] Cusatis G, Alnaggar M, Rezakhani R. Multiscale modeling of alkali silica reaction degradation of concrete. In: Li K, Yan P, Yang R, editors. Proceedings of the RILEM International Symposium on Concrete Modelling—CONMOD 2014; 2014 Oct 12–14; Beijing, China. Bagneux: RILEM Publications S.A.R.L.; 2014. p. 431–8. 链接1

[33] Cusatis G, Zhou X. High-order microplane theory for quasi-brittle materials with multiple characteristic lengths. J Eng Mech 2014;140(7):04014046. 链接1

[34] Ceccato C, Salviato M, Pellegrino C, Cusatis G. Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape. Int J Solids Struct 2017;108:216–29. 链接1

[35] Pelessone D. MARS: modeling and analysis of the response of structures— user’s manual. Solana Beach: ES3; 2009 [cited date]. Available from: http:// www.es3inc.com/mechanics/MARS/Online/MarsManual.htm. 链接1

[36] Smith J, Cusatis G, Pelessone D, Landis E, O’Daniel J, Baylot J. Discrete modeling of ultra-high-performance concrete with application to projectile penetration. Int J Impact Eng 2014;65:13–32. 链接1

[37] Feng J, Sun W, Li B. Numerical study of size effect in concrete penetration with LDPM. Def Technol 2018;14(5):560–9. 链接1

[38] Schauffert EA, Cusatis G. Lattice discrete particle model for fiber-reinforced concrete. I: theory. J Eng Mech 2012;138(7):826–33. 链接1

[39] Schauffert EA, Cusatis G, Pelessone D, O’Daniel JL, Baylot JT. Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior. J Eng Mech 2012;138(7):834–41. 链接1

[40] Feng J, Yao W, Li W, Li W. Lattice discrete particle modeling of plain concrete perforation responses. Int J Impact Eng 2017;109:39–51. 链接1

[41] Chatterji S, Jensen AD, Thaulow N, Christensen P. Studies of alkali–silica reaction. Part 3. Mechanisms by which NaCl and Ca(OH)2 affect the reaction. Cement Concr Res 1986;16(2):246–54. 链接1

[42] Diamond S, Barneyback RS, Struble LJ. On the physics and chemistry of alkali– silica reactions. In: Proceedings of the 5th International Conference on Alkali– Aggregate Reaction in Concrete; 1981 Mar 30–Apr 3; Cape Town, South Africa; 1981. 链接1

[43] Dron R, Brivot F. Thermodynamic and kinetic approach to the alkali–silica reaction. Part 1: concepts. Cement Concr Res 1992;22(5):941–8. 链接1

[44] Prince W, Perami R. Mise en evidence du role essentiel des ions OH dans les reactions alcali–silice. Cement Concr Res 1993;23(5):1121–9. French. 链接1

[45] Wilson M, Cabrera JG, Zou Y. The process and mechanism of alkali–silica reaction using fused silica as the reactive aggregate. Adv Cement Res 1994;6 (23):117–25. 链接1

[46] Chatterji S, Thaulow N, Jensen AD. Studies of alkali–silica reaction. Part 4: effect of different alkali salt solutions on expansion. Cement Concr Res 1987;17(5):777–83. 链接1

[47] Kim T, Olek J. Chemical sequence and kinetics of alkali–silica reaction. Part I: experiments. J Am Ceram Soc 2014;97(7):2195–203. 链接1

[48] Larive C, Laplaud A, Coussy O. The role of water in alkali–silica reaction. In: Proceedings of the 11th International Conference on Alkali–Aggregate Reaction; 2000 Jun 11–16; Quebec City, QC, Canada; 2000, p. 61–9. 链接1

[49] Multon S, Toutlemonde F. Effect of moisture conditions and transfers on alkali silica reaction damaged structures. Cement Concr Res 2010;40 (6):924–34. 链接1

[50] Glasser LSD. Osmotic pressure and the swelling of gels. Cement Concr Res 1979;9(4):515–7. 链接1

[51] Šachlová Š, Prˇikryl R, Pertold Z. Alkali–silica reaction products: comparison between samples from concrete structures and laboratory test specimens. Mater Charact 2010;61(12):1379–93. 链接1

[52] Thaulow N, Jakobsen UH, Clark B. Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses. Cement Concr Res 1996;26(2):309–18. 链接1

[53] Fernandes I. Composition of alkali–silica reaction products at different locations within concrete structures. Mater Charact 2009;60(7): 655–68. 链接1

[54] Moon J, Speziale S, Meral C, Kalkan B, Clark SM, Monteiro PJM. Determination of the elastic properties of amorphous materials: case study of alkali–silica reaction gel. Cement Concr Res 2013;54:55–60. 链接1

[55] Lindgård J, Andiç-Çakır Ö, Fernandes I, Rønning TF, Thomas MDA. Alkali–silica reactions (ASR): literature review on parameters influencing laboratory performance testing. Cement Concr Res 2012;42(2):223–43. 链接1

[56] Ben Haha M. Mechanical effects of alkali silica reaction in concrete studied by SEM-image analysis [dissertation]. Lausanne: École polytechnique fédérale de Lausanne; 2006. 链接1

[57] Sanchez LFM, Fournier B, Jolin M, Duchesne J. Reliable quantification of AAR damage through assessment of the damage rating index (DRI). Cement Concr Res 2015;67:74–92. 链接1

[58] Regourd M, Hornain H, Poitevin O. Alkali–aggregate reaction concrete microstructural evolution. In: Proceedings of the 5th International Conference on Alkali–Aggregate Reaction in Concrete; 1981 Mar 30–Apr 3; Cape Town, South Africa; 1981. 链接1

[59] Di Luzio G, Cusatis G. Hygro-thermo-chemical modeling of high performance concrete. I: theory. Cement Concr Compos 2009;31(5):301–8. 链接1

[60] Hassani B, Hinton E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct 1998;69(6):707–17. 链接1

[61] Kouznetsova VG, Geers M, Brekelmans WAM. Size of a representative volume element in a second-order computational homogenization framework. Int J Multiscale Comput Eng 2004;2(4):575–98. 链接1

[62] Li W, Rezakhani R, Jin C, Zhou X, Cusatis G. A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. Int J Numer Anal Methods Geomech 2017;41(14):1494–522. 链接1

[63] Shehata MH, Thomas MDA. The effect of fly ash composition on the expansion of concrete due to alkali–silica reaction. Cement Concr Res 2000;30 (7):1063–72. 链接1

[64] Gitman IM, Askes H, Sluys LJ. Coupled-volume multi-scale modelling of quasibrittle material. Eur J Mech A Solids 2008;27(3):302–27. 链接1

相关研究