期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.03.001

高压下铜-氢化合物体系的结构研究

a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China

b Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK

c Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

收稿日期: 2018-09-03 修回日期: 2019-01-04 录用日期: 2019-03-05 发布日期: 2019-04-06

下一篇 上一篇

摘要

理论和实验研究都表明,极端高压条件下氢气和众多金属或非金属所构成的二元体系化合物的物理性质显著增强,这使得含氢二元体系成为高压科学领域的重要研究对象。尽管氢气的化学性质活泼,但一些贵金属(如铜、银、金)依旧很难在常温常压下与氢气反应生成相应的金属氢化物,截至目前,没有任何贵金属与氢的摩尔比大于1的稳定化合物被报道。在本研究中,我们通过结合原位激光加热,在金刚石对顶砧压腔中通过氢气和金属铜单质反应成功合成了铜-氢二元化合物。通过对X射线衍射数据进行分析,我们探究了从常压到最高50 GPa压力范围内铜-氢体系的相行为和稳定性。该实验证实了前期理论预测的三个铜-氢化合物相:γ0-CuH0.15、γ1-CuH0.5和ε-Cu2H。更值得一提的是,该研究还通过对金刚石对顶砧腔体内部样品进行激光加热,合成了目前已知的室温下最高氢含量和稳定性的贵金属氢化物γ2-CuH0.65。该项研究加深了人们对于过渡金属-氢化合物体系的认知,同时,通过该实验合成的氢化物由于具有很高的含氢量,有望被设计成理想的储氢材料。

图片

图1

图2

图3

参考文献

[ 1 ] Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015;525:73–6. 链接1

[ 2 ] Somayazulu MS, Finger LW, Hemley RJ, Mao H. High-pressure compounds in methane-hydrogen mixtures. Science 1996;271(5254):1400–2. 链接1

[ 3 ] Binns J, Dalladay-Simpson P, Wang M, Ackland GJ, Gregoryanz E, Howie RT. Formation of H2-rich iodine-hydrogen compounds at high pressure. Phys Rev B 2018;97(2):024111. 链接1

[ 4 ] Howie RT, Guillaume CL, Scheler T, Goncharov AF, Gregoryanz E. Mixed molecular and atomic phase of dense hydrogen. Phys Rev Lett 2012;108 (12):125501. 链接1

[ 5 ] Dalladay-Simpson P, Howie RT, Gregoryanz E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 2016;529(7584):63–7. 链接1

[ 6 ] Howie RT, Turnbull R, Binns J, Frost M, Dalladay-Simpson P, Gregoryanz E. Formation of xenon-nitrogen compounds at high pressure. Sci Rep 2016;6 (1):34896. 链接1

[ 7 ] Binns J, Dalladay-Simpson P, Wang M, Gregoryanz E, Howie RT. Enhanced reactivity of lithium and copper at high pressure. J Phys Chem Lett 2018;9 (11):3149–53. 链接1

[ 8 ] Li B, Ding Y, Kim DY, Ahuja R, Zou G, Mao HK. Rhodium dihydride (RhH2) with high volumetric hydrogen density. Proc Natl Acad Sci USA 2011;108 (46):18618–21. 链接1

[ 9 ] Kim DY, Scheicher RH, Pickard CJ, Needs RJ, Ahuja R. Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen. Phys Rev Lett 2011;107(11):117002. 链接1

[10] Antonov VE. Phase transformations, crystal and magnetic structures of highpressure hydrides of d-metals. J Alloys Compd 2002;330–332:110–6. 链接1

[11] Burtovyy R, Tkacz M. High-pressure synthesis of a new copper hydride from elements. Solid State Commun 2004;131(3–4):169–73. 链接1

[12] Donnerer C, Scheler T, Gregoryanz E. High-pressure synthesis of noble metal hydrides. J Chem Phys 2013;138(13):134507. 链接1

[13] Wurtz A. On copper hydride. C R Hebd Acad Sci Paris 1844;18:702. French. 链接1

[14] Hasin P, Wu Y. Sonochemical synthesis of copper hydride (CuH). Chem Commun 2012;48(9):1302–4. 链接1

[15] Fukai Y. The metal-hydride system. 2nd ed. Berlin: Springer Verlag; 2005. 链接1

[16] Fitzsilmons NP, Jones W, Herley PJ. Studies of copper hydride. J Chem Soc 1995;91:713–8. 链接1

[17] Pépin CM, Geneste G, Dewaele A, Mezouar M, Loubeyre P. Synthesis of FeH5: a layered structure with atomic hydrogen slabs. Science 2017;357(6349):382–5. 链接1

[18] Wang M, Binns J, Donnelly ME, Peña-Alvarez M, Dalladay-Simpson P, Howie RT. High pressure synthesis and stability of cobalt hydrides. J Chem Phys 2018;148(14):144310. 链接1

[19] Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V. Toward an internally consistent pressure scale. Proc Natl Acad Sci USA 2007;104(22):9182–6. 链接1

[20] Mao HK, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 1986;91(B5):4673. 链接1

[21] Goncharov AF, Prakapenka VB, Struzhkin VV, Kantor I, Rivers ML, Dalton DA. Xray diffraction in the pulsed laser heated diamond anvil cell. Rev Sci Instrum 2010;81(11):113902. 链接1

[22] Prescher C, Prakapenka VB. DIOPTAS: a program for reduction of twodimensional X-ray diffraction data and data exploration. High Press Res 2015;35(3):223–30. 链接1

[23] Petrˇícˇek V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z Kristallogr Cryst Mater 2014;229(5):345–52. 链接1

[24] Baranowski B, Bochen´ ska K. The free energy and entropy of formation of nickel hydride. Z Phys Chem (NF) 1965;45(8):140–52. 链接1

[25] Ponyatovskiĭ EG, Antonov VE, Belash IT. Properties of high pressure phases in metal-hydrogen systems. Sov Phys Usp 1982;25(8):596–619. 链接1

[26] Prakapenka VB, Kubo A, Kuznetsov A, Laskin A, Shkurikhin O, Dera P, et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 2008;28 (3):225–35. 链接1

[27] Dewaele A, Loubeyre P, Mezouar M. Equations of state of six metals above 94 GPa. Phys Rev B Condens Matter Mater Phys 2004;70(9):1–8. 链接1

[28] Baranowski B, Majchrzak S, Flanagan TB. The volume increase of FCC metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents. J Phys F Met Phys 1971;1(3):258–61. 链接1

[29] Somenkov VA, Glazkov VP, Irodova AV, Kurchotov IV. Crystal structure and volume effects in the hydrides. J Less Common Met 1987;129:171–80. 链接1

[30] Hemmes H, Driessen A, Griessen R, Gupta M. Isotope effects and pressure dependence of the Tc of superconducting stoichiometric PdH and PdD synthesized and measured in a diamond anvil cell. Phys Rev B Condens Matter 1989;39(7):4110–8. 链接1

[31] Scheler T, Degtyareva O, Marqués M, Guillaume CL, Proctor JE, Evans S, et al. Synthesis and properties of platinum hydride. Phys Rev B Condens Matter Mater Phys 2011;83(21):1–5. 链接1

[32] Degtyareva O, Proctor JE, Guillaume CL, Gregoryanz E, Hanfland M. Formation of transition metal hydrides at high pressures. Solid State Commun 2009;149:1583–6. 链接1

[33] Baranowski B, Filipek SM. 45 years of nickel hydride—history and perspectives. J Alloys Compd 2005;404–406:2–6. 链接1

相关研究