期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2019.03.013

快速球磨法高效实现各向同性气雾化MnAl 粉的纳米化制备

Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain

收稿日期: 2018-07-31 修回日期: 2019-03-11 录用日期: 2019-03-12 发布日期: 2020-02-27

下一篇 上一篇

摘要

为了提高永磁体性能尤其是矫顽力,对气雾化MnAl粉末首次进行了30 s短时间球磨。结果表明,如此短的处理时间加上随后的退火可以高效地得到纳米结构和可控的相变。球磨过程中产生的微应变引起的缺陷与退火过程中形成的β相共同起到钉扎中心的作用,从而提高了矫顽力。研究表明,为了在磁化强度和矫顽力之间达到折中,在铁磁性τ-MnAl相和β相的形成之间找到一个平衡是很重要的。球磨(30 s)和退火后获得的矫顽力高达4.2 kOe (1 Oe = 79.6 A·m–1),与早期文献报道的球磨时间超过20 h时的矫顽力相当。球磨后粉末的退火温度降低了75 ℃,矫顽力提高了2.5倍,而退火后的气雾化材料的剩磁基本保持不变,为合成各向同性的MnAl基粉末开辟了一条新的途径。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Coey JMD. Hard magnetic materials: a perspective. IEEE Trans Magn 2011;47 (12):4671–81. 链接1

[ 2 ] Lewis LH, Jiménez-Villacorta F. Perspectives on permanent magnetic materials for energy conversion and power generation. Metall Mater Trans A 2013;44 (S1):2–20. 链接1

[ 3 ] Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 2011;23(7):821–42. 链接1

[ 4 ] Koch AJJ, Hokkeling P, Steeg MG, de Vos KJ. New material for permanent magnets on a base of Mn and Al. J Appl Phys 1960;31(5):S75–7. 链接1

[ 5 ] Ko¯no H. On the ferromagnetic phase in manganese–aluminum system. J Phys Soc Jpn 1958;13(12):1444–51. 链接1

[ 6 ] Jiménez-Villacorta F, Marion JL, Oldham JT, Daniil M, Willard MA, Lewis LH. Magnetism-structure correlations during the e?s transformation in rapidlysolidified MnAl nanostructured alloys. Metals 2014;4(1):8–19. 链接1

[ 7 ] Zeng Q, Baker I, Cui JB, Yan ZC. Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials. J Magn Magn Mater 2007;308 (2):214–26. 链接1

[ 8 ] Chatuverdi A, Yaqub R, Baker I. Microstructure and magnetic properties of bulk nanocrystalline MnAl. Metals 2014;4(1):20–7. 链接1

[ 9 ] Marshall LG, McDonald IJ, Lewis LH. Quantification of the strain-induced promotion of s-MnAl via cryogenic milling. J Magn Magn Mater 2016;404:215–20. 链接1

[10] Jian H, Skokov KP, Gutfleisch O. Microstructure and magnetic properties of Mn–A1–C alloy powders prepared by ball milling. J Alloys Compd 2015;622:524–8. 链接1

[11] Bittner F, Freudenberger J, Schultz L, Woodcock TG. The impact of dislocations on coercivity in L10-MnAl. J Alloys Compd 2017;704:528–36. 链接1

[12] Lee JG, Wang XL, Zhang ZD, Choi CJ. Effect of mechanical milling and heat treatment on the structure and magnetic properties of gas atomized Mn–Al alloy powders. Thin Solid Films 2011;519(23):8312–6. 链接1

[13] Law JY, Rial J, Villanueva M, López N, Camarero J, Marshall LG, et al. Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles. J Alloys Compd 2017;712:373–8. 链接1

[14] Rial J, Švec P, Palmero EM, Camarero J, Švec P Sr, Bollero A. Severe tuning of permanent magnet properties in gas-atomized MnAl powder by controlled nanostructuring and phase transformation. Acta Mater 2018;157:42–52. 链接1

[15] Palmero EM, Rial J, de Vicente J, Camarero J, Skårman B, Vidarsson H, et al. Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies. Sci Technol Adv Mater 2018;19(1):465–73. 链接1

相关研究