期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第5期 doi: 10.1016/j.eng.2019.07.019

面向热带地区植物修复的植物性状研究

a Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
b Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore

收稿日期: 2018-11-02 修回日期: 2019-03-15 录用日期: 2019-04-11 发布日期: 2019-07-22

下一篇 上一篇

摘要

水是一种有限而宝贵的资源。新加坡的国家水源有4种补给方式,其中之一是自然降水。雨水径流会收集污染物,并将其富集到排水系统和水库中。在当地雨水径流中发现的主要富营养污染物包括硝酸盐和磷酸盐,这些富营养污染物可能导致富营养化。在有植物存在的情况下,生物滞留系统可以有效去除这些污染物。本文探讨了植物特性对雨水径流中营养性污染物的植物修复作用,并将其应用于生物防护系统中。所研究的植物物种在叶绿素含量、叶片绿色的浓度、生物量的产生以及硝酸盐和磷酸盐去除方面表现出了差异。一般而言,干生物量与硝酸盐和磷酸盐的去除程度相关(r = 0.339~0.501)。本地树种的根、叶和总干生物量显示出与硝酸盐去除程度之间的中等至强相关性(分别为0.811、0.657和0.727)。速生植物的叶片干生物量与两种污染物的去除程度也显示出中等至强相关性(r 分别为0.707和0.609)。低生长植株的根系生物量与磷的去除有很强的相关性(r = 0.707),但与硝酸盐去除的相关性较弱(r = 0.557)。这些结果对于选择用于生物滞留系统的植物是有价值的。

图片

图1

图2

图3

参考文献

[ 1 ] Wong THF, Breen P, Lloyd S. Water sensitive road design—design options for improving stormwater quality of road runoff. Report. Melbourne: Cooperative Research Centre for Catchment Hydrology; 2000. 链接1

[ 2 ] Sun S, Barraud S, Castebrunet H, Aubin JB, Marmonier P. Long-term stormwater quantity and quality analysis using continuous measurements in a French urban catchment. Water Res 2015;85:432–42. 链接1

[ 3 ] Goonetilleke A, Thomas E, Ginn S, Gilbert D. Understanding the role of land use in urban stormwater quality management. J Environ Manage 2005;74 (1):31–42. 链接1

[ 4 ] Bratières K, Fletcher TD, Deletic A, Zinger Y. Nutrient and sediment removal by stormwater biofilters: a large-scale design optimisation study. Water Res 2008;42(14):3930–40. 链接1

[ 5 ] Dietz ME, Clausen JC. Stormwater runoff and export changes with development in a traditional and low impact subdivision. J Environ Manage 2008;87(4):560–6. 链接1

[ 6 ] Emerson CH, Traver RG. Multiyear and seasonal variation of infiltration from storm-water best management practices. J Irrig Drain Eng 2008;134 (5):598–605. 链接1

[ 7 ] Kazemi F, Beecham S, Gibbs J. Streetscale bioretention basins in Melbourne and their effect on local biodiversity. Ecol Eng 2009;35(10):1454–65. 链接1

[ 8 ] Laurenson G, Laurenson S, Bolan N, Beecham S, Clark I. The role of bioretention systems in the treatment of stormwater. Adv Agron 2013;120:223–74. 链接1

[ 9 ] Archer NAL, Quinton JN, Hess TM. Below-ground relationships of soil texture, roots, and hydraulic conductivity in two-phase mosaic vegetation in SouthEast Spain. J Arid Environ 2002;52(4):535–53. 链接1

[10] Le Coustumer S, Fletcher TD, Deletic A, Barraud S. Hydraulic performance of biofilters for stormwater management: first lessons from both laboratory and field studies. Water Sci Technol 2007;56:93–100. 链接1

[11] Clark SE, Pitt R. Targeting treatment technologies to address specific stormwater pollutants and numeric discharge limits. Water Res 2012;46(20):6715–30. 链接1

[12] Read J, Wevill T, Fletcher T, Deletic A. Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Res 2008;42(4–5):893–902. 链接1

[13] Davis AP, Hunt WF, Traver RG, Clar M. Bioretention technology: overview of current practice and future needs. J Environ Eng 2009;135(3):109–17. 链接1

[14] Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK. Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 2003;61(5–6):405–12. 链接1

[15] Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS. Role of assisted natural remediation in environmental cleanup. Geoderma 2004;122(2–4):121–42. 链接1

[16] Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R. The phytomanagement of trace elements in soil. CRC Crit Rev Plant Sci 2009;28 (4):240–66. 链接1

[17] Brisson J, Chazarenc F. Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Sci Total Environ 2009;407(13):3923–30. 链接1

[18] Kumar D, Tripathi DK, Chauhan DK. Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments. Biol Trace Elem Res 2014;157(2):164–74. 链接1

[19] Read J, Fletcher TD, Wevill T, Deletic A. Plant traits that enhance pollutant removal from stormwater in biofiltration systems. Int J Phytoremediation 2009;12(1):34–53. 链接1

[20] Lim HS. Variations in the water quality of a small urban tropical catchment: implications for load estimation and water quality monitoring. Hydrobiologia 2003;494(1–3):57–63. 链接1

[21] Joshi UM, Balasubramanian R. Characteristics and environmental mobility of trace elements in urban runoff. Chemosphere 2010;80(3):310–8. 链接1

[22] Maxwell K, Johnson GN. Chlorophyll fluorescence–—a practical guide. J Exp Bot 2000;51(345):659–68. 链接1

[23] Gorbe E, Calatayud A. Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 2012;138:24–35. 链接1

[24] Lawlor DW. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 2002;53 (370):773–87. 链接1

[25] Qiu Z, Wang M, Lai W, He F, Chen Z. Plant growth and nutrient removal in constructed monoculture and mixed wetlands related to stubble attributes. Hydrobiologia 2011;661(1):251–60. 链接1

[26] Foyer CH, Ferrario-Mery S, Noctor G. Interactions between carbon and nitrogen metabolism. In: Lea PJ, Morot-Gaudry J, editors. Plant nitrogen. Berlin: Springer; 2001. p. 237–54. 链接1

[27] Lawlor DW, Lemaire G, Gastal F. Nitrogen, plant growth and crop yield. In: Lea PJ, Morot-Gaudry J, editors. Plant nitrogen. Berlin: Springer; 2001. p. 343–67. 链接1

[28] Ågren GI, Wetterstedt JA, Billberger MF. Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. New Phytol 2012;194(4):953–60. 链接1

[29] Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ. Evidence of a general 2/3—power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc Biol Sci 2010;277(1683):877–83. 链接1

[30] Belmont MA, Metcalfe CD. Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants—a laboratory-scale study. Ecol Eng 2003;21(4–5):233–47. 链接1

[31] Calheiros CSC, Bessa VS, Mesquita RBR, Brix H, Rangel AOSS, Castro PML. Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecol Eng 2015;79:1–7. 链接1

[32] Alofs KM, Fowler NL. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass. Ecology 2013;94(3):751–60. 链接1

[33] Rodríguez M, Brisson J. Pollutant removal efficiency of native versus exotic common reed (Phragmites australis) in North American treatment wetlands. Ecol Eng 2015;74:364–70. 链接1

[34] Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 2002;17(4):164–70. 链接1

[35] Avanesyan A, Culley TM. Herbivory of native and exotic North-American prairie grasses by nymph Melanoplus grasshoppers. Plant Ecol 2015;216 (3):451–64. 链接1

[36] Gherardi LA, Sala OE, Yahdjian L. Preference for different inorganic nitrogen forms among plant functional types and species of the Patagonian steppe. Oecologia 2013;173(3):1075–81. 链接1

[37] Jabloun M, Schelde K, Tao F, Olesen JE. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. Eur J Agron 2015;62:55–64. 链接1

[38] Shekhar V, Stӧckle D, Thellmann M, Vermeer JEM. The role of plant root systems in evolutionary adaptation. Curr Top Dev Biol 2019;131:55–80. 链接1

[39] Dhillon KS, Dhillon SK, Thind HS. Evaluation of different agroforestry tree species for their suitability in the phytoremediation of seleniferous soils. Soil Use Manage 2008;24(2):208–16. 链接1

[40] Warren CR. Why does temperature affect relative uptake rates of nitrate, ammonium and glycine: a test with Eucalyptus pauciflora. Soil Biol Biochem 2009;41(4):778–84. 链接1

[41] Inselsbacher E, Näsholm T. A novel method to measure the effect of temperature on diffusion of plant-available nitrogen in soil. Plant Soil 2012;354(1–2):251–7. 链接1

[42] Yan Q, Duan Z, Mao J, Li X, Dong F. Effects of root–zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics. J Soil Sci Plant Nutr 2012;58(6):707–17. 链接1

相关研究