期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第1期 doi: 10.1016/j.eng.2019.07.020

病毒性疾病对奶牛繁殖力的重要影响

a Royal Veterinary College, Hatfield AL9 7TA, UK
b Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria

收稿日期: 2018-08-14 修回日期: 2019-01-08 录用日期: 2019-04-18 发布日期: 2019-07-24

下一篇 上一篇

摘要

世界各地的牛群中有许多病毒性疾病是地方性疾病。许多病毒穿过胎盘并导致流产和胎儿畸形的能力是众所周知的。还有大量证据表明,病毒感染对于奶牛还有其他影响,反映在受胎率的降低上。但是,这些影响很大程度上取决于单个动物首次感染该疾病的时间,因此难以量化。本文介绍了5种可能影响奶牛繁殖力的病毒,以及它们的潜在作用机制。妊娠中期非细胞病变型牛病毒性腹泻病毒(bovine viral diarrhea virus, BVDV)的急性感染会使流产率升高或导致持续感染的犊牛出生。在临近配种期感染BVDV会直接影响卵巢和子宫内膜,导致发情周期不规律和早期胚胎死亡。BVDV诱发的免疫抑制也可能降低繁殖力,从而增加对细菌的易感性。牛疱疹病毒(bovine herpesvirus, BHV)-1型在青春期前的小母牛中最常见,会导致它们生长减缓,延迟繁殖并提高首次产犊的年龄,先前受感染的动物继而表现出繁殖力的降低。尽管这可能与肺损伤有关,但也有卵巢病变的相关报告。初次感染后,BHV-1和BHV-4都潜伏在宿主中,并且可能在以后由于应激而重新激活,如与产犊和早期泌乳有关的应激。虽然仅感染BHV-4可能不会降低繁殖力,但它似乎与已建立的细菌病原体(如大肠杆菌和化脓隐秘杆菌)共同作用,促进子宫内膜炎的发展并延迟产犊后母牛的子宫修复机制。施马伦贝格病毒(Schmallenberg virus, SBV)和蓝舌病病毒(bluetongue virus, BTV)均以昆虫作为媒介传播,导致流产率和先天畸形的增加。BTV-8同时还损害孵出囊泡的发育;此外,任何一种病毒在繁殖前后的感染基本都会降低受胎率。尽管受胎率的降低通常难以量化,但足以造成经济损失,这有助于衡量疫苗接种和根除方案的效益。

参考文献

[ 1 ] Newcomer BW, Walz PH, Givens MD. Potential applications for antiviral therapy and prophylaxis in bovine medicine. Anim Health Res Rev 2014;15 (1):102–17. 链接1

[ 2 ] More SJ, McKenzie K, O’Flaherty J, Doherty ML, Cromie AR, Magan MJ. Setting priorities for non-regulatory animal health in Ireland: results from an expert Policy Delphi study and a farmer priority identification survey. Prev Vet Med 2010;95(3–4):198–207. 链接1

[ 3 ] Ali H, Ali AA, Atta MS, Cepica A. Common, emerging, vector-borne and infrequent abortogenic virus infections of cattle. Transbound Emerg Dis 2012;59(1):11–25. 链接1

[ 4 ] Wathes DC, Diskin MG. Reproduction, events and management: Mating management: fertility. In: Reference module in food sciences. Amsterdam: Elsevier; 2015. p. 1–11. 链接1

[ 5 ] Daniel Givens M, Marley MSD. Infectious causes of embryonic and fetal mortality. Theriogenology 2008;70(3):270–85. 链接1

[ 6 ] Bach A. Ruminant nutrition symposium: optimizing performance of the Offspring: nourishing and managing the dam and postnatal calf for optimal lactation, reproduction, and immunity. J Anim Sci 2012;90(6):1835–45. 链接1

[ 7 ] Walz PH, Grooms DL, Passler T, Ridpath JF, Tremblay R, Step DL, et al. Control of bovine viral diarrhea virus in ruminants. J Vet Intern Med 2010;24(3):476–86. 链接1

[ 8 ] Velasova M, Damaso A, Prakashbabu BC, Gibbons J, Wheelhouse N, Longbottom D, et al. Herd-level prevalence of selected endemic infectious diseases of dairy cows in Great Britain. J Dairy Sci 2017;100(11):9215–33. 链接1

[ 9 ] Ridpath JF. BVDV genotypes and biotypes: practical implications for diagnosis and control. Biologicals 2003;31(2):127–31. 链接1

[10] Peterhans E, Schweizer M. Pestiviruses: how to outmaneuver your hosts. Vet Microbiol 2010;142(1–2):18–25. 链接1

[11] Eigen M. Viral quasispecies. Sci Am 1993;269(1):42–9. 链接1

[12] Charleston B, Carr BV, Morrison WI, Fray MD, Baigent S. Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon. J Gen Virol 2001;82(Pt 8):1893–7. 链接1

[13] Baigent SJ, Goodbourn S, McCauley JW. Differential activation of interferon regulatory factors-3 and -7 by non-cytopathogenic and cytopathogenic bovine viral diarrhoea virus. Vet Immunol Immunopathol 2004;100(3–4):135–44. 链接1

[14] Bielanski A, Sapp T, Lutze-Wallace C. Association of bovine embryos produced by in vitro fertilization with a noncytopathic strain of bovine viral diarrhea virus type II. Theriogenology 1998;49(6):1231–8. 链接1

[15] Givens MD, Riddell KP, Edmondson MA, Walz PH, Gard JA, Zhang Y, et al. Epidemiology of prolonged testicular infections with bovine viral diarrhea virus. Vet Microbiol 2009;139(1–2):42–51. 链接1

[16] Collins ME, Heaney J, Thomas CJ, Brownlie J. Infectivity of pestivirus following persistence of acute infection. Vet Microbiol 2009;138(3–4):289–96. 链接1

[17] Lanyon SR, Hill FI, Reichel MP, Brownlie J. Bovine viral diarrhoea: pathogenesis and diagnosis. Vet J 2014;199(2):201–9. 链接1

[18] Chen Z, Rijnbrand R, Jangra RK, Devaraj SG, Qu L, Ma Y, et al. Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 2007;366(2):277–92. 链接1

[19] Wang J, Liu B, Wang N, Lee YM, Liu C, Li K. TRIM56 is a virus- and interferoninducible E3 ubiquitin ligase that restricts pestivirus infection. J Virol 2011;85(8):3733–45. 链接1

[20] Zürcher C, Sauter KS, Schweizer M. Pestiviral Erns blocks TLR-3-dependent IFN synthesis by LL37 complexed RNA. Vet Microbiol 2014;174(3–4):399–408. 链接1

[21] McGowan MR, Kirkland PD, Rodwell BJ, Kerr DR, Carroll CL. A field investigation of the effects of bovine viral diarrhea virus infection around the time of insemination on the reproductive performance of cattle. Theriogenology 1993;39(2):443–9. 链接1

[22] Fray MD, Paton DJ, Alenius S. The effects of bovine viral diarrhoea virus on cattle reproduction in relation to disease control. Anim Reprod Sci 2000;60– 61:615–27. 链接1

[23] Rüfenacht J, Schaller P, Audigé L, Knutti B, Küpfer U, Peterhans E. The effect of infection with bovine viral diarrhea virus on the fertility of Swiss dairy cattle. Theriogenology 2001;56(2):199–210. 链接1

[24] Rodning SP, Givens MD, Marley MS, Zhang Y, Riddell KP, Galik PK, et al. Reproductive and economic impact following controlled introduction of cattle persistently infected with bovine viral diarrhea virus into a naive group of heifers. Theriogenology 2012;78(7):1508–16. 链接1

[25] Newcomer BW, Walz PH, Givens MD, Wilson AE. Efficacy of bovine viral diarrhea virus vaccination to prevent reproductive disease: a meta-analysis. Theriogenology 2015;83(3):360–5. 链接1

[26] Grooms DL, Brock KV, Pate JL, Day ML. Changes in ovarian follicles following acute infection with bovine viral diarrhea virus. Theriogenology 1998;49 (3):595–605. 链接1

[27] Fray MD, Mann GE, Clarke MC, Charleston B. Bovine viral diarrhoea virus: its effects on ovarian function in the cow. Vet Microbiol 2000;77(1–2):185–94. 链接1

[28] Kafi M, McGowan MR, Kirkland PD, Jillella D. The effect of bovine pestivirus infection on the superovulatory response of Friesian heifers. Theriogenology 1997;48(6):985–96. 链接1

[29] Grooms DL. Reproductive consequences of infection with bovine viral diarrhea virus. Vet Clin North Am Food Anim Pract 2004;20(1):5–19. 链接1

[30] Grooms DL, Brock KV, Ward LA. Detection of bovine viral diarrhea virus in the ovaries of cattle acutely infected with bovine viral diarrhea virus. J Vet Diagn Invest 1998;10(2):125–9. 链接1

[31] Fray MD, Mann GE, Bleach EC, Knight PG, Clarke MC, Charleston B. Modulation of sex hormone secretion in cows by acute infection with bovine viral diarrhoea virus. Reproduction 2002;123(2):281–9. 链接1

[32] Dobson H, Smith RF. What is stress, and how does it affect reproduction? Anim Reprod Sci 2000;60–61:743–52. 链接1

[33] Dobson H, Walker SL, Morris MJ, Routly JE, Smith RF. Why is it getting more difficult to successfully artificially inseminate dairy cows? Animal 2008;2 (8):1104–11. 链接1

[34] Roth Z, Wolfenson D. Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: basic and applied aspects. Domest Anim Endocrinol 2016;56(Suppl):S218–27. 链接1

[35] Bielanski A, Algire J, Lalonde A, Garceac A. Embryos produced from fertilization with bovine viral diarrhea virus (BVDV)-infected semen and the risk of disease transmission to embryo transfer (ET) recipients and offspring. Theriogenology 2013;80(5):451–5. 链接1

[36] Firat I, Ak S, Bozkurt HH, Ak K, Turan N, Bagcigil F. Distribution of bovine viral diarrhea virus (BVDV) in the genital system tissues of cattle. Vet Arh 2002;72:235–48. 链接1

[37] Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO. Defining postpartum uterine disease in cattle. Theriogenology 2006;65(8):1516–30. 链接1

[38] Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth HJ. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol Reprod 2009;81 (6):1025–32. 链接1

[39] Oguejiofor CF, Cheng Z, Abudureyimu A, Fouladi-Nashta AA, Wathes DC. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biol Reprod 2015;93(4):100. 链接1

[40] Oguejiofor CF, Cheng Z, Abudureyimu A, Anstaett OL, Brownlie J, Fouladi-Nashta AA, et al. Global transcriptomic profiling of bovine endometrial immune response in vitro. II. Effect of bovine viral diarrhea virus on the endometrial response to lipopolysaccharide. Biol Reprod 2015;93(4):101. 链接1

[41] Cheng Z, Chauhan L, Barry AT, Abudureyimu A, Oguejiofor CF, Chen X, et al. Acute bovine viral diarrhea virus infection inhibits expression of interferon s-stimulated genes in bovine endometrium. Biol Reprod 2017;96 (6):1142–53. 链接1

[42] Cheng Z, Abudureyimu A, Oguejiofor CF, Ellis R, Barry AT, Chen X, et al. BVDV alters uterine prostaglandin production during pregnancy recognition in cows. Reproduction 2016;151(6):605–14. 链接1

[43] Lewis GS. Steroidal regulation of uterine resistance to bacterial infection in livestock. Reprod Biol Endocrinol 2003;1(1):117. 链接1

[44] Herath S, Lilly ST, Fischer DP, Williams EJ, Dobson H, Bryant CE, et al. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2a to prostaglandin E2 in bovine endometrium. Endocrinology 2009;150(4):1912–20. 链接1

[45] Arosh JA, Banu SK, Kimmins S, Chapdelaine P, Maclaren LA, Fortier MA. Effect of interferon-s on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2. Endocrinology 2004;145(11):5280–93. 链接1

[46] Opsomer G, Gröhn YT, Hertl J, Coryn M, Deluyker H, De Kruif A. Risk factors for post partum ovarian dysfunction in high producing dairy cows in Belgium: a field study. Theriogenology 2000;53(4):841–57. 链接1

[47] Kimura K, Spate LD, Green MP, Murphy CN, Seidel Jr GE, Roberts RM. Sexual dimorphism in interferon-tau production by in vivo-derived bovine embryos. Mol Reprod Dev 2004;67(2):193–9. 链接1

[48] Roberts RM. Interferon-s, a type 1 interferon involved in maternal recognition of pregnancy. Cytokine Growth Factor Rev 2007;18(5–6):403–8. 链接1

[49] Wathes DC, Lamming GE. The oxytocin receptor, luteolysis and the maintenance of pregnancy. J Reprod Fertil Suppl 1995;49:53–67. 链接1

[50] Lonergan P, Forde N. Maternal–embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal 2014;8(Suppl 1):64–9. 链接1

[51] Roberts RM, Ealy AD, Alexenko AP, Han CS, Ezashi T. Trophoblast interferons. Placenta 1999;20(4):259–64. 链接1

[52] Bazer FW. Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotechnol 2013;4(1):23. 链接1

[53] Forde N, Carter F, Spencer TE, Bazer FW, Sandra O, Mansouri-Attia N, et al. Conceptus–induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol Reprod 2011;85(1):144–56. 链接1

[54] Hansen PJ. The immunology of early pregnancy in farm animals. Reprod Domest Anim 2011;46(Suppl 3):18–30. 链接1

[55] Hansen TR, Pru JK. ISGylation: a conserved pathway in mammalian pregnancy. Adv Exp Med Biol 2014;759:13–31. 链接1

[56] Waldrop JG, Stringfellow DA, Riddell KP, Galik PK, Riddell MG, Givens MD, et al. Different strains of noncytopathic bovine viral diarrhea virus (BVDV) vary in their affinity for in vivo-derived bovine embryos. Theriogenology 2004;62(1–2):45–55. 链接1

[57] Da Silva Cardoso Pinto V, Alves MF, de Souza Nunes Martins M, Basso AC, Tannura JH, Pontes JHF, et al. Effects of oocytes exposure to bovine diarrhea viruses BVDV-1, BVDV-2 and Hobi-like virus on in vitro-produced bovine embryo development and viral infection. Theriogenology 2017; 97:67–72. 链接1

[58] Gard JA, Givens MD, Marley MS, Galik PK, Riddell KP, Edmondson MA, et al. Intrauterine inoculation of seronegative heifers with bovine viral diarrhea virus concurrent with transfer of in vivo-derived bovine embryos. Theriogenology 2010;73(8):1009–17. 链接1

[59] Tsuboi T, Imada T. Noncytopathogenic and cytopathogenic bovine viral diarrhea-mucosal disease viruses do not affect in vitro embryonic development into the blastocyst stage. Vet Microbiol 1996;49(1–2):127–34. 链接1

[60] Vanroose G, Nauwynck H, Soom AV, Vanopdenbosch E, Kruif A. Replication of cytopathic and noncytopathic bovine viral diarrhea virus in zona-free and zona-intact in vitro-produced bovine embryos and the effect on embryo quality. Biol Reprod 1998;58(3):857–66. 链接1

[61] Gard JA, Givens MD, Stringfellow DA. Bovine viral diarrhea virus (BVDV): epidemiologic concerns relative to semen and embryos. Theriogenology 2007;68(3):434–42. 链接1

[62] Gard JA, Givens MD, Marley MS, Galik PK, Riddell KP, Stringfellow DA, et al. Bovine viral diarrhea virus (BVDV) associated with single in vivo-derived and in vitro-produced preimplantation bovine embryos following artificial exposure. Theriogenology 2009;71(8):1238–44. 链接1

[63] Ackermann M, Engels M. Pro and contra IBR-eradication. Vet Microbiol 2006;113(3–4):293–302. 链接1

[64] Ring SC, Graham DA, Sayers RG, Byrne N, Kelleher MM, Doherty ML, et al. Genetic variability in the humoral immune response to bovine herpesvirus-1 infection in dairy cattle and genetic correlations with performance traits. J Dairy Sci 2018;101(7):6190–204. 链接1

[65] Chen X, Wang X, Qi Y, Wen X, Li C, Liu X, et al. Meta-analysis of prevalence of bovine herpes virus 1 in cattle in the mainland of China. Acta Trop 2018;187:37–43. 链接1

[66] McGuirk SM. Disease management of dairy calves and heifers. Vet Clin North Am Food Anim Pract 2008;24(1):139–53. 链接1

[67] Miller JM, Van der Maaten MJ. Effect of primary and recurrent infections bovine rhinotracheitis virus infection on the bovine ovary. Am J Vet Res 1985;46(7):1434–7. 链接1

[68] Rock D, Lokensgard J, Lewis T, Kutish G. Characterization of dexamethasoneinduced reactivation of latent bovine herpesvirus 1. J Virol 1992;66 (4):2484–90. 链接1

[69] Inman M, Lovato L, Doster A, Jones C. A mutation in the latency-related gene of bovine herpesvirus 1 disrupts the latency reactivation cycle in calves. J Virol 2002;76(13):6771–9. 链接1

[70] Johnson KF, Burn CC, Wathes DC. Rates and risk factors for contagious disease and mortality in young dairy heifers. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 2011;6(059):1–10. 链接1

[71] Johnson KF, Chancellor N, Burn CC, Wathes DC. Analysis of pre-weaning feeding policies and other risk factors influencing growth rates in calves on 11 commercial dairy farms. Animal 2018;12(7):1413–23. 链接1

[72] Waltner-Toews D, Martin SW, Meek AH. The effect of early calfhood health status on survivorship and age at first calving. Can J Vet Res 1986;50 (3):314–7. 链接1

[73] Svensson C, Liberg P. The effect of group size on health and growth rate of Swedish dairy calves housed in pens with automatic milk-feeders. Prev Vet Med 2006;73(1):43–53. 链接1

[74] Bach A. Associations between several aspects of heifer development and dairy cow survivability to second lactation. J Dairy Sci 2011;94(2):1052–7. 链接1

[75] Thompson PN, Stone A, Schultheiss WA. Use of treatment records and lung lesion scoring to estimate the effect of respiratory disease on growth during early and late finishing periods in South African feedlot cattle. J Anim Sci 2006;84(2):488–98. 链接1

[76] Correa MT, Curtis CR, Erb HN, White ME. Effect of calfhood morbidity on age at first calving in New York Holstein herds. Prev Vet Med 1988;6(4):253–62. 链接1

[77] Hultgren J, Svensson C. Calving interval in dairy cows in relation to heifer rearing conditions in southwest Sweden. Reprod Domest Anim 2010;45 (1):136–41. 链接1

[78] Svensson C, Hultgren J. Associations between housing, management, and morbidity during rearing and subsequent first-lactation milk production of dairy cows in Southwest Sweden. J Dairy Sci 2008;91(4):1510–8. 链接1

[79] Sayers RG. Associations between exposure to bovine herpesvirus 1 (BoHV-1) and milk production, reproductive performance, and mortality in Irish dairy herds. J Dairy Sci 2017;100(2):1340–52. 链接1

[80] Asmare K, Sibhat B, Ayelet G, Gebremedhin EZ, Lidete KA, Skjerve E. Serological evidence of bovine herpesvirus-1, bovine viral diarrhea virus and Schmallenberg virus infections in relation to reproductive disorders in dairy cattle in Ethiopia. Acta Trop 2018;178:236–41. 链接1

[81] Sibhat B, Ayelet G, Skjerve E, Gebremedhin EZ, Asmare K. Bovine herpesvirus1 in three major milk sheds of Ethiopia: serostatus and association with reproductive disorders in dairy cattle. Prev Vet Med 2018;150:126–32. 链接1

[82] Newcomer BW, Cofield LG, Walz PH, Givens MD. Prevention of abortion in cattle following vaccination against bovine herpesvirus 1: a meta-analysis. Prev Vet Med 2017;138:1–8. 链接1

[83] Smith PC, Nusbaum KE, Kwapien RP, Stringfellow DA, Driggers K. Necrotic oophoritis in heifers vaccinated intravenously with infectious bovine rhinotracheitis virus vaccine during estrus. Am J Vet Res 1990;51 (7):969–72. 链接1

[84] Van der Maaten MJ, Miller JM, Whetstone CA. Ovarian lesions induced in heifers by intravenous inoculation with modified-live infectious bovine rhinotracheitis virus on the day after breeding. Am J Vet Res 1985;46 (9):1996–9. 链接1

[85] Miller JM, Van der Maaten MJ. Experimentally induced infectious bovine rhinotracheitis virus infection during early pregnancy: effect on the bovine corpus luteum and conceptus. Am J Vet Res 1986;47(2):223–8. 链接1

[86] Perry GA, Zimmerman AD, Daly RF, Buterbaugh RE, Rhoades J, Scholz D, et al. The effects of vaccination on serum hormone concentrations and conception rates in synchronized naive beef heifers. Theriogenology 2013;79(1):200–5. 链接1

[87] Chiang BC, Smith PC, Nusbaum KE, Stringfellow DA. The effect of infectious bovine rhinotracheitis vaccine on reproductive efficiency in cattle vaccinated during estrus. Theriogenology 1990;33(5):1113–20. 链接1

[88] Alm K, Koskinen E, Vahtiala S, Andersson M. Acute BRSV infection in young AI bulls: effect on sperm quality. Reprod Domest Anim 2009;44(3):456–9. 链接1

[89] Givens MD. Review: risks of disease transmission through semen in cattle. Animal 2018;12(Suppl 1):S165–71. 链接1

[90] Donofrio G, Franceschi V, Capocefalo A, Cavirani S, Sheldon IM. Isolation and characterization of bovine herpesvirus 4 (BoHV-4) from a cow affected by post partum metritis and cloning of the genome as a bacterial artificial chromosome. Reprod Biol Endocrinol 2009;7(1):83. 链接1

[91] Chastant-Maillard S. Impact of bovine herpesvirus 4 (BoHV-4) on reproduction. Transbound Emerg Dis 2015;62(3):245–51. 链接1

[92] Osorio FA, Reed DE. Experimental inoculation of cattle with bovine herpesvirus-4: evidence for a lymphoid-associated persistent infection. Am J Vet Res 1983;44(6):975–80. 链接1

[93] Dubuisson J, Thiry E, Bublot M, Thomas I, Van Bressem MF, Coignoul F, et al. Experimental infection of bulls with a genital isolate of bovine herpesvirus-4 and reactivation of latent virus with dexamethasone. Vet Microbiol 1989;21 (2):97–114. 链接1

[94] Donofrio G, van Santen VL. A bovine macrophage cell line supports bovine herpesvirus-4 persistent infection. J Gen Virol 2001;82(Pt 5):1181–5. 链接1

[95] Graham DA, McNeill GJ, Calvert V, Mawhinney K, Curran W, Ball NW, et al. Virological and serological evidence of bovine herpesvirus type 4 in cattle in Northern Ireland. Vet Rec 2005;157(18):539–43. 链接1

[96] Nikolin VM, Donofrio G, Milosevic B, Taddei S, Radosavljevic V, Milicevic V. First Serbian isolates of bovine herpesvirus 4 (BoHV-4) from a herd with a history of postpartum metritis. New Microbiol 2007;30(1):53–7. 链接1

[97] Frazier K, Pence M, Mauel MJ, Liggett A, Hines ME II, Sangster L, et al. Endometritis in postparturient cattle associated with bovine herpesvirus-4 infection: 15 cases. J Vet Diagn Invest 2001;13(6):502–8. 链接1

[98] Monge A, Elvira L, Gonzalez JV, Astiz S, Wellenberg GJ. Bovine herpesvirus 4- associated postpartum metritis in a Spanish dairy herd. Res Vet Sci 2006;80 (1):120–5. 链接1

[99] Szenci O, Sassi G, Fodor L, Molnár L, Szelényi Z, Tibold J, et al. Co-infection with bovine herpesvirus 4 and Histophilus somni significantly extends the service period in dairy cattle with purulent vaginal discharge. Reprod Domest Anim 2016;51(1):143–9. 链接1

[100] Klamminger S, Prunner I, Giuliodori MJ, Drillich M. Uterine infection with bovine herpesvirus type 4 in dairy cows. Reprod Domest Anim 2017;52 (1):115–21. 链接1

[101] Gür S, Dog˘an N. The possible role of bovine herpesvirus type-4 infection in cow infertility. Anim Sci J 2010;81(3):304–8. 链接1

[102] Donofrio G, Herath S, Sartori C, Cavirani S, Flammini CF, Sheldon IM. Bovine herpesvirus 4 is tropic for bovine endometrial cells and modulates endocrine function. Reproduction 2007;134(1):183–97. 链接1

[103] Chanrot M, Blomqvist G, Guo Y, Ullman K, Juremalm M, Bage R, et al. Bovine herpes virus type 4 alters TNF-a and IL-8 profiles and impairs the survival of bovine endometrial epithelial cells. Reprod Biol 2017;17(3):225–32. 链接1

[104] Donofrio G, Ravanetti L, Cavirani S, Herath S, Capocefalo A, Sheldon IM. Bacterial infection of endometrial stromal cells influences bovine herpesvirus 4 immediate early gene activation: a new insight into bacterial and viral interaction for uterine disease. Reproduction 2008;136 (3):361–6. 链接1

[105] Morán PE, Pérez SE. Odeón AC, Verna AE. Bovine herpesvirus 4 (BoHV-4): general aspects of the biology and status in Argentina. Rev Argent Microbiol 2015;47(2):155–66. Spanish. 链接1

[106] Jacca S, Franceschi V, Colagiorgi A, Sheldon M, Donofrio G. Bovine endometrial stromal cells support tumor necrosis factor alpha-induced bovine herpesvirus type 4 enhanced replication. Biol Reprod 2013;88 (5):135. 链接1

[107] Donofrio G, Capocefalo A, Franceschi V, Price S, Cavirani S, Sheldon IM. The chemokine IL8 is up-regulated in bovine endometrial stromal cells by the BoHV-4 IE2 gene product, ORF50/Rta: a step ahead toward a mechanism for BoHV-4 induced endometritis. Biol Reprod 2010;83(6):919–28. 链接1

[108] Tebaldi G, Jacca S, Montanini B, Capra E, Rosamilia A, Sala A, et al. Virusmediated metalloproteinase 1 induction revealed by transcriptome profiling of bovine herpesvirus 4-infected bovine endometrial stromal cells. Biol Reprod 2016;95(1):12. 链接1

[109] Wathes DC, Cheng Z, Fenwick MA, Fitzpatrick R, Patton J. Influence of energy balance on the somatotrophic axis and matrix metalloproteinase expression in the endometrium of the postpartum dairy cow. Reproduction 2011;141 (2):269–81. 链接1

[110] Faveeuw C, Preece G, Ager A. Transendothelial migration of lymphocytes across high endothelial venules into lymph nodes is affected by metalloproteinases. Blood 2001;98(3):688–95. 链接1

[111] Fischer M, Hoffmann B, Goller KV, Höper D, Wernike K, Beer M. A mutation ‘hot spot’ in the Schmallenberg virus M segment. J Gen Virol 2013;94(Pt 6):1161–7. 链接1

[112] Wernike K, Hoffmann B, Beer M. Schmallenberg virus. Dev Biol 2013;135:175–82. 链接1

[113] Martinelle L, Poskin A, Dal Pozzo F, De Regge N, Cay B, Saegerman C. Experimental infection of sheep at 45 and 60 days of gestation with Schmallenberg virus readily led to placental colonization without causing congenital malformations. PLoS ONE 2015;10(9):e0139375. 链接1

[114] Wernike K, Holsteg M, Schirrmeier H, Hoffmann B, Beer M. Natural infection of pregnant cows with Schmallenberg virus—a follow-up study. PLoS ONE 2014;9(5):e98223. 链接1

[115] Afonso A, Abrahantes JC, Conraths F, Veldhuis A, Elbers A, Roberts H, et al. The Schmallenberg virus epidemic in Europe—2011–2013. Prev Vet Med 2014;116(4):391–403. 链接1

[116] Wüthrich M, Lechner I, Aebi M, Vögtlin A, Posthaus H, Schüpbach-Regula G, et al. A case-control study to estimate the effects of acute clinical infection with the Schmallenberg virus on milk yield, fertility and veterinary costs in Swiss dairy herds. Prev Vet Med 2016;126:54–65. 链接1

[117] Varela M, Schnettler E, Caporale M, Murgia C, Barry G, McFarlane M, et al. Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. PLoS Pathog 2013;9(1):e1003133. 链接1

[118] Veldhuis AM, Santman-Berends IM, Gethmann JM, Mars MH, Van Wuyckhuise L, Vellema P, et al. Schmallenberg virus epidemic: impact on milk production, reproductive performance and mortality in dairy cattle in the Netherlands and Kleve District, Germany. Prev Vet Med 2014;116 (4):412–22. 链接1

[119] Lechner I, Wüthrich M, Meylan M, Van den Borne BHP, Schüpbach-Regula G. Association of clinical signs after acute Schmallenberg virus infection with milk production and fertility in Swiss dairy cows. Prev Vet Med 2017;146:121–9. 链接1

[120] Carpenter S, Wilson A, Mellor PS. Culicoides and the emergence of bluetongue virus in northern Europe. Trends Microbiol 2009;17(4):172–8. 链接1

[121] Wilson A, Mellor P. Bluetongue in Europe: vectors, epidemiology and climate change. Parasitol Res 2008;103(Suppl 1):S69–77. 链接1

[122] Dal Pozzo F, Saegerman C, Thiry E. Bovine infection with bluetongue virus with special emphasis on European serotype 8. Vet J 2009;182 (2):142–51. 链接1

[123] Nusinovici S, Seegers H, Joly A, Beaudeau F, Fourichon C. Quantification and at-risk period of decreased fertility associated with exposure to bluetongue virus serotype 8 in naïve dairy herds. J Dairy Sci 2012;95(6):3008–20. 链接1

[124] Osburn BI. The impact of bluetongue virus on reproduction. Comp Immunol Microbiol Infect Dis 1994;17(3–4):189–96. 链接1

[125] Uhaa IJ, Riemann HP, Thurmond MC. Franti CE. A cross-sectional study of bluetongue virus and Mycoplasma bovis infections in dairy cattle: II. The association between a positive antibody response and reproduction performance. Vet Res Commun 1990;14(6):471–80. 链接1

[126] Méroc E, Herr C, Verheyden B, Hooyberghs J, Houdart P, Raemaekers M, et al. Bluetongue in Belgium: episode II. Transbound Emerg Dis 2009;56(1– 2):39–48. 链接1

[127] Santman-Berends IM, Hage JJ, van Rijn PA, Stegeman JA, Van Schaik G. Bluetongue virus serotype 8 (BTV-8) infection reduces fertility of Dutch dairy cattle and is vertically transmitted to offspring. Theriogenology 2010;74 (8):1377–84. 链接1

[128] Bowen RA, Howard TH, Elsden RP, Seidel GE. Bluetongue virus and embryo transfer in cattle. Prog Clin Biol Res 1985;178:85–9. 链接1

[129] Vandaele L, Wesselingh W, De Clercq K, De Leeuw I, Favoreel H, Van Soom A, et al. Susceptibility of in vitro produced hatched bovine blastocysts to infection with bluetongue virus serotype 8. Vet Res 2011;42(1):14. 链接1

[130] Ratinier M, Shaw AE, Barry G, Gu Q, Di Gialleonardo L, Janowicz A, et al. Bluetongue virus NS4 protein is an interferon antagonist and a determinant of virus virulence. J Virol 2016;90(11):5427–39. 链接1

[131] Usman T, Hadlich F, Demasius W, Weikard R, Kühn C. Unmapped reads from cattle RNAseq data: a source for missing and misassembled sequences in the reference assemblies and for detection of pathogens in the host. Genomics 2017;109(1):36–42. 链接1

相关研究