期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第5期 doi: 10.1016/j.eng.2019.07.021

高效选择性PVDF中空纤维膜设计及除铯研究

a Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
b Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
c State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
d State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
e Xi'an High-Tech Institute, Xi'an 710025, China

收稿日期: 2018-11-15 修回日期: 2019-01-01 录用日期: 2019-04-23 发布日期: 2019-07-31

下一篇 上一篇

摘要

本研究通过一种简单有效的接枝方法成功制备了亚铁氰化铜/二氧化硅/聚偏氟乙烯(CuFC/SiO2/PVDF)中空纤维膜。PVDF中空纤维膜通过SiO2中间层将CuFC纳米颗粒固定以去除Cs。分别通过扫描电子显微镜和X射线能谱仪分析了改性膜表面形貌和化学组成。3层CuFC和0.5% SiO2负载制备的CuFC/SiO2/PVDF膜具有非常高的膜渗透通量(49 L·m-2·h-1·bar-1)和Cs截留率(99.82%),且pH(4~10)的变化对Cs的去除率影响较小。改性膜可以通过NH4NO3进行多次有效再生。在1 mmol·L–1的共存竞争离子(K+和Na+)影响下,改性膜仍保持较高的除Cs效率(8 h分别为76.25%和88.67%),展现出对Cs的选择去除性。特别地, CuFC/SiO2/PVDF膜在处理含低浓度Cs(100 μg·L–1)的天然地表水和模拟水体时表现出非常优异的去除率(>90%)。因此,CuFC/SiO2/PVDF膜具有处理受Cs污染的放射性废水的工程应用潜力。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Kozai N, Suzuki S, Aoyagi N, Sakamoto F, Ohnuki T. Radioactive fallout cesium in sewage sludge ash produced after the Fukushima Daiichi nuclear accident. Water Res 2015;68:616–26. 链接1

[ 2 ] Takata H, Kusakabe M, Inatomi N, Ikenoue T. Appearances of Fukushima Daiichi nuclear power plant—derived 137Cs in coastal waters around Japan: results from marine monitoring off nuclear power plants and facilities, 1983– 2016. Environ Sci Technol 2018;52(5):2629–37. 链接1

[ 3 ] Kim YK, Kim T, Kim Y, Harbottle D, Lee JW. Highly effective Cs+ removal by turbidity-free potassium copper hexacyanoferrate-immobilized magnetic hydrogels. J Hazard Mater 2017;340:130–9. 链接1

[ 4 ] Khannanov A, Nekljudov VV, Gareev B, Kiiamov A, Tour JM, Dimiev AM. Oxidatively modified carbon as efficient material for removing radionuclides from water. Carbon 2017;115:394–401. 链接1

[ 5 ] Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, et al. Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 2014;160:142–9. 链接1

[ 6 ] Ding S, Yang Y, Li C, Huang H, Hou LA. The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Res 2016;95:174–84. 链接1

[ 7 ] Ding S, Yang Y, Huang H, Liu H, Hou LA. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium. J Hazard Mater 2015;294:27–34. 链接1

[ 8 ] Rana D, Matsuura T, Kassim MA, Ismail AF. Radioactive decontamination of water by membrane processes—a review. Desalination 2013;321:77–92. 链接1

[ 9 ] Rajib M, Oguchi CT. Adsorption of 133Cs and 87Sr on pumice tuff: a comparative study between powder and intact solid phase. Acta Geochim 2017;36 (2):224–31. 链接1

[10] Ding D, Zhang Z, Chen R, Cai T. Selective removal of cesium by ammonium molybdophosphate-polyacrylonitrile bead and membrane. J Hazard Mater 2017;324(Pt B):753–61. 链接1

[11] De Haro-Del Rio DA, Al-Jubori S, Kontogiannis O, Papadatos-Gigantes D, Ajayi O, Li C, et al. The removal of caesium ions using supported clinoptilolite. J Hazard Mater 2015;289:1–8. 链接1

[12] Mu W, Yu Q, Li X, Wei H, Jian Y. Efficient removal of Cs+ and Sr2+ from aqueous solution using hierarchically structured hexagonal tungsten trioxide coated Fe3O4. Chem Eng J 2017;319:170–8. 链接1

[13] Lee NK, Khalid HR, Lee HK. Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Micropor Mesopor Mat 2017;242:238–44. 链接1

[14] Yin X, Wang X, Wu H, Takahashi H, Inaba Y, Ohnuki T, et al. Effects of NH4 + , K+ , Mg2+, and Ca2+ on the cesium adsorption/desorption in binding sites of vermiculitized biotite. Environ Sci Technol 2017;51(23):13886–94. 链接1

[15] Yang HM, Hwang KS, Park CW, Lee KW. Sodium-copper hexacyanoferratefunctionalized magnetic nanoclusters for the highly efficient magnetic removal of radioactive caesium from seawater. Water Res 2017;125:81–90. 链接1

[16] Zhang H, Zhao X, Wei J, Li F. Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem Eng J 2015;275:262–70. 链接1

[17] Vashnia S, Tavakoli H, Cheraghali R, Sepehrian H. Zinc hexacyanoferrate loaded mesoporous MCM-41 as a new adsorbent for cesium: equilibrium, kinetic and thermodynamic studies. Desalin Water Treat 2015;55:1220–8. 链接1

[18] Qing Y, Li J, Kang B, Chang S, Dai Y, Long Q, et al. Selective sorption mechanism of Cs+ on potassium nickel hexacyanoferrate(II) compounds. J Radioanal Nucl Chem 2015;304(2):527–33. 链接1

[19] Chen GR, Chang YR, Liu X, Kawamoto T, Tanaka H, Kitajima A, et al. Prussian blue (PB) granules for cesium (Cs) removal from drinking water. Separ Purif Tech 2015;143:146–51. 链接1

[20] Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, et al. Thermodynamics and mechanism studies on electrochemical removal of cesium ions from aqueous solution using a nanoparticle film of copper hexacyanoferrate. ACS Appl Mater Interfaces 2013;5(24):12984–90. 链接1

[21] Kim Y, Kim YK, Kim S, Harbottle D, Lee JW. Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem Eng J 2017;313:1042–50. 链接1

[22] Hwang KS, Park CW, Lee KW, Park SJ, Yang HM. Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles. Colloid Surface A 2017;516:375–82. 链接1

[23] Yang HM, Lee KW, Seo BK, Moon JK. Copper ferrocyanide-functionalized magnetic nanoparticles for the selective removal of radioactive cesium. J Nanosci Nanotechnol 2015;15(2):1695–9. 链接1

[24] Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM. Influence of adsorption parameters on cesium uptake from aqueous solutions—a brief review. RSC Adv 2015;5(88):71658–83. 链接1

[25] Michel C, Barre Y, De Windt L, De Dieuleveult C, Brackx E, Grandjean A. Ion exchange and structural properties of a new cyanoferrate mesoporous silica material for Cs removal from natural saline waters. J Environ Chem Eng 2017;5 (1):810–7. 链接1

[26] Banerjee D, Sandhya U, Pahan S, Joseph A, Ananthanarayanan A, Shah JG. Removal of 137Cs and 90Sr from low-level radioactive effluents by hexacyanoferrate loaded synthetic 4A type zeolite. J Radioanal Nucl Chem 2017;311(1):893–902. 链接1

[27] Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, et al. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 2010;182(1–3):225–31. 链接1

[28] Chen GR, Chang YR, Liu X, Kawamoto T, Tanaka H, Parajuli D, et al. Prussian blue non-woven filter for cesium removal from drinking water. Separ Purif Tech 2015;153:37–42. 链接1

[29] Efome JE, Rana D, Matsuura T, Lan CQ. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chem Eng J 2018;352:737–44. 链接1

[30] Efome JE, Rana D, Matsuura T, Lan CQ. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl Mater Interfaces 2018;10 (22):18619–29. 链接1

[31] Efome JE, Rana D, Matsuura T, Lan CQ. Metal–organic frameworks supported on nanofibers to remove heavy metals. J Mater Chem A Mater Energy Sustain 2018;6(10):4550–5. 链接1

[32] Chaudhury S, Pandey AK, Goswami A. Copper ferrocyanide loaded track etched membrane: an effective cesium adsorbent. J Radioanal Nucl Chem 2015;304 (2):697–703. 链接1

[33] Kim H, Kim M, Lee W, Kim S. Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing Prussian blue. J Hazard Mater 2018;347:106–13. 链接1

[34] Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, et al. Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochim Acta 2013;87:119–25. 链接1

[35] Bang H, Watanabe K, Nakashima R, Kai W, Song KH, Lee JS, et al. A highly hydrophilic water-insoluble nanofiber composite as an efficient and easily-handleable adsorbent for the rapid adsorption of cesium from radioactive wastewater. RSC Adv 2014;4(103):59571–8. 链接1

[36] Jia Z, Cheng X, Guo Y, Tu L. In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chem Eng J 2017;325:513–20. 链接1

[37] Ding S, Zhang L, Li Y, Hou LA. Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. J Hazard Mater 2019;368:292–9. 链接1

[38] Qin A, Li X, Zhao X, Liu D, He C. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl Mater Interfaces 2015;7(16):8427–36. 链接1

[39] Yatsimirskii KB, Nemoshkalenko VV, Nazarenko YP, Aleshin VG, Zhilinskaya VV, Tomashevsky NA. Use of X-ray photoelectron and Mössbauer spectroscopies in the study of iron pentacyanide complexes. J Electron Spectrosc Relat Phenom 1977;10(3):239–45. 链接1

[40] Seah MP, Smith GC, Anthony MT. AES: energy calibration of electron spectrometers. I—an absolute, traceable energy calibration and the provision of atomic reference line energies. Surf Interface Anal 1990;15(5):293–308. 链接1

[41] Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, et al. Structure of copper-potassium hexacyanoferrate(II) and sorption mechanisms of cesium. J Solid State Chem 2004;177(6):1817–28. 链接1

[42] Egorin A, Tokar E, Zemskova L, Didenko N, Portnyagin A, Azarova Y, et al. Chitosan-ferrocyanide sorbents for concentrating Cs-137 from seawater. Sep Sci Technol 2017;52(12):1983–91. 链接1

[43] Nilchi A, Malek B, Ghanadi Maragheh M, Khanchi A. Exchange properties of cyanide complexes. J Radioanal Nucl Chem 2003;258(3):457–62. 链接1

相关研究