期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第4期 doi: 10.1016/j.eng.2019.07.026

肠道菌群是调节神经系统功能紊乱的潜在靶点

a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
c National Engineering Research Center for Functional Food, Wuxi 214122, China
d International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi 214122, China
e Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
f Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China

收稿日期: 2018-08-29 修回日期: 2019-02-21 录用日期: 2019-07-04 发布日期: 2020-02-28

下一篇 上一篇

摘要

众所周知,肠道菌群在调节宿主生理功能方面具有重要作用,如调节免疫和代谢平衡。近年来,越来越多证据表明肠道菌群能够通过肠-脑轴调节中枢神经系统功能,这为研究肠道和大脑间的相互作用关系开辟了一条新路径。本文首先介绍了肠道菌群与大脑相互作用的肠–脑轴分子机制,以及肠道菌群失调引发的神经系统功能紊乱;然后介绍了调节肠道菌群失衡是干预神经系统功能紊乱的潜在策略,如益生菌、益生元、合生元以及饮食等干预措施。目前关于肠道菌群–肠–脑轴方面的研究尚处在起步阶段,但继续深入阐明肠道菌群调节神经系统功能的分子机制不仅能揭示神经系统功能紊乱的新型病理机制,而且能够为神经系统功能紊乱提供潜在的诊断标志物和干预策略。

参考文献

[ 1 ] Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533. 链接1

[ 2 ] Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355–9. 链接1

[ 3 ] Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA 2014;111:E2329–38. 链接1

[ 4 ] Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008;6:776–88. 链接1

[ 5 ] Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242–9. 链接1

[ 6 ] Kelly JR, Clarke G, Cryan JF, Dinan TG. Brain–gut–microbiota axis: challenges for translation in psychiatry. Ann Epidemiol 2016;26:366–72. 链接1

[ 7 ] Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489:220–30. 链接1

[ 8 ] Rieder R, Wisniewski PJ, Alderman BL, Campbell SC. Microbes and mental health: a review. Brain Behav Immun 2017;66:9–17. 链接1

[ 9 ] Relman DA. The human microbiome and the future practice of medicine. JAMA 2015;314(11):1127–8. 链接1

[10] Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 2015;17:565–76. 链接1

[11] Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell 2016;167:915–32. 链接1

[12] Vandvik PO, Wilhelmsen I, Ihlebaek C, Farup PG. Comorbidity of irritable bowel syndrome in general practice: a striking feature with clinical implications. Aliment Pharm Therap 2004;20:1195–203. 链接1

[13] Gros DF, Antony MM, McCabe RE, Swinson RP. Frequency and severity of the symptoms of irritable bowel syndrome across the anxiety disorders and depression. J Anxiety Disord 2009;23:290–6. 链接1

[14] Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701–12. 链接1

[15] Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome–brain– gut axis communication. Adv Exp Med Biol 2014;817:115–33. 链接1

[16] Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011;108(38):16050–5. 链接1

[17] Goehler LE, Gaykema RPA, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 2005;19(4): 334–44. 链接1

[18] Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab 2014;20(5):719–30. 链接1

[19] O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behav Brain Res 2015;277:32–48. 链接1

[20] Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016;165:1332–45. 链接1

[21] Kennedy PJ, Murphy AB, Cryan JF, Ross PR, Dinan TG, Stanton C. Microbiome in brain function and mental health. Trends Food Sci Technol 2016;57(Pt B):289–301. 链接1

[22] Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161(2):264–76. 链接1

[23] Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 2010;51(5):1101–12. 链接1

[24] Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, et al. Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2012;2: 233. 链接1

[25] Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 2011;33:574–81. 链接1

[26] Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. c-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012;113:411–7. 链接1

[27] Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Trace amine-associated receptors and their ligands. Br J Pharmacol 2006;149:967–78. 链接1

[28] Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol 2013;20:14–21. 链接1

[29] Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015;29 (4):1395–403. 链接1

[30] Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 2004;558(Pt 1):263–75. 链接1

[31] Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 2015;232:1793–801. 链接1

[32] Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 2011;105(5):755–64. 链接1

[33] Erny D, De Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015;18:965–77. 链接1

[34] Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci Transl Med 2014;6(263):158. 链接1

[35] Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–55. 链接1

[36] Dantzer R, Konsman JP, Bluthe RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci Basic 2000;85:60–5. 链接1

[37] Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin 2009;29(2):247–64. 链接1

[38] Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry 2015;78(4):E7–9. 链接1

[39] Hoban A, Stilling R, Desbonnet L, Shanahan F, Dinan TG, Claesson MJ, et al. Regulation of myelination in the prefrontal cortex by the gut microbiota: implications for health and disease. FASEB J 2015;29(1 Suppl):672.4. 链接1

[40] Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011;141(2):599–609. 链接1

[41] Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: a meta-analysis. Medicine 2017;96:e6696. 链接1

[42] Fond G, Boukouaci W, Chevalier G, Regnault A, Eberl G, Hamdani N, et al. The ‘‘psychomicrobiotic”: targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol 2015;63(1):35–42. 链接1

[43] Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010;16(4):444–53. 链接1

[44] Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol 2011;77(18):6718–21. 链接1

[45] Kang DW, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB, et al. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 2013;8:e68322. 链接1

[46] Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 2017;5:10. 链接1

[47] Kang DW, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 2018;49:121–31. 链接1

[48] Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings. J Autism Dev Disord 2017;47:480–9. 链接1

[49] Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley M, Conlon MA. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism 2013;4:42. 链接1

[50] Son JS, Zheng LJ, Rowehl LM, Tian XY, Zhang Y, Zhu W, et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS ONE 2015;10 (10):e0137725. 链接1

[51] De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 2013;8 (10):e76993. 链接1

[52] Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio 2012;3(1):e00261–11. 链接1

[53] Riordan SM, McIver CJ, Wakefield D, Duncombe VM, Thomas MC, Bolin TD. Small intestinal mucosal immunity and morphometry in luminal overgrowth of indigenous gut flora. Am J Gastroenterol 2001;969(2):494–500. 链接1

[54] Yim YS, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 2017;549(7673):482–7. 链接1

[55] Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan TG, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 2017;549:528–32. 链接1

[56] Tabouy L, Getselter D, Ziv O, Karpuj M, Tabouy T, Lukic I, et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav Immun 2018;73:310–9. 链接1

[57] Baxter AJ, Patton G, Scott KM, Degenhardt L, Whiteford HA. Global epidemiology of mental disorders: what are we missing? PLoS ONE 2013;8: e65514. 链接1

[58] Belmaker RH, Agam G. Major depressive disorder. N Engl J Med 2008;358: 55–68. 链接1

[59] Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health 2013;34:119–38. 链接1

[60] Mussell M, Kroenke K, Spitzer RL, Williams JBW, Herzoga W, Löwe B. Gastrointestinal symptoms in primary care: prevalence and association with depression and anxiety. J Psychosom Res 2008;64:605–12. 链接1

[61] Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil 2013;25:713–9. 链接1

[62] Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013;18 (6):666–73. 链接1

[63] Liang S, Wang T, Hu X, Luo J, Li W, Wu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015;310:561–77. 链接1

[64] Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 2014;26:1615–27. 链接1

[65] Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota–gut–brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 2017;82(7):472–87. 链接1

[66] Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016;21(6):786–96. 链接1

[67] Jiang HY, Ling ZX, Zhang YH, Mao HJ, Ma ZP, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015;48:186–94. 链接1

[68] Lin P, Ding B, Feng C, Yin S, Zhang T, Qi X, et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord 2017;207:300–4. 链接1

[69] Kelly JR, Borre Y, O’Brien, Patterson E, Aidy SE, Deane J, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016;82:109–18. 链接1

[70] Aizawa E, Tsuji H, Asahara T, Takahashi T, Terashi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord 2016;202:254–7. 链接1

[71] Yu M, Jia HM, Zhou C, Yang Y, Zhao Y, Yang M, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharmaceut Biomed 2017;138:231–9. 链接1

[72] Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 2008;43:164–74. 链接1

[73] Britton E, McLaughlin JT. Ageing and the gut. Proc Nutr Soc 2013;72:173–7. 链接1

[74] Alameel T, Basheikh M, Andrew MK. Digestive symptoms in older adults: prevalence and associations with institutionalization and mortality. Can J Gastroenterol 2012;26:881–4. 链接1

[75] Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017;74(20):3769–87. 链接1

[76] Catanzaro R, Anzalone M, Calabrese F, Milazzo M, Capuana M, Italia A, et al. The gut microbiota and its correlations with the central nervous system disorders. Panminerva Med 2015;57(3):127–43. 链接1

[77] Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018;14:367–425. 链接1

[78] Mancuso C, Santangelo R. Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence. Pharmacol Res 2018;129:329–36. 链接1

[79] Chen CH, Lin CL, Kao CH. Irritable bowel syndrome is associated with an increased risk of dementia: a nationwide population-based study. PLoS ONE 2016;11(1):e0144589. 链接1

[80] Alkasir R, Li J, Li XD, Jin M, Zhu BL. Human gut microbiota: the links with dementia development. Protein Cell 2017;8:90–102. 链接1

[81] Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017;49:60–8. 链接1

[82] Akbari E, Asemi Z, Kakhaki RD, Bahmani F, Kouchaki E, Tamtaji K, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 2016;10(8):256. 链接1

[83] Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM. Microbiota– gut–brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 2016;27:1–8. 链接1

[84] Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015;386:896–912. 链接1

[85] Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2015;14:625–39. 链接1

[86] Braak H, de Vos RAI, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006;396:67–72. 链接1

[87] Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 2014;128(6):805–20. 链接1

[88] Svensson E, Horvath-Puho E, Thomsen RW, Djurhuus JC, Pederson L, Borqhammer P, et al. Vagotomy and subsequent risk of Parkinson’s disease. Mov Disord 2015;30:S445–6. 链接1

[89] Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 2017;88(21):1996–2002. 链接1

[90] Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016;167(6):1469–80. 链接1

[91] Sun MF, Zhu YL, Zhou ZL, Jia XB, Xu YD, Yang Q, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-alpha signaling pathway. Brain Behav Immun 2018;70:48–60. 链接1

[92] Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015;30(3):350–8. 链接1

[93] Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord 2015;30 (10):1351–60. 链接1

[94] Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS ONE 2015;10(11):e0142164. 链接1

[95] Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 2016;32:66–72. 链接1

[96] Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med 2017;9:1–13. 链接1

[97] Li W, Wu XL, Hu X, Wang T, Liang S, Duan Y, et al. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 2017;60(11):1223–33. 链接1

[98] Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K, et al. Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLoS ONE 2017;12(11):e0187307. 链接1

[99] Ogino S, Nishihara R, VanderWeele TJ, Wang M, Nishi A, Lochhead P, et al. The role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology 2016;27(4):602–11. 链接1

[100] Ogino S, Nowak JA, Hamada T, Milner DA Jr, Nishihara R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol 2019;14:83–103. 链接1

[101] Lankelma JM, Nieuwdorp M, De Vos WM, Wiersinga WJ. The gut microbiota in internal medicine: implications for health and disease. Neth J Med 2015;73:61–8. 链接1

[102] Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 2010;4(2):232–41. 链接1

[103] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559–63. 链接1

[104] Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science 2005;308 (5728):1635–8. 链接1

[105] Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG. Food for thought: the role of nutrition in the microbiota–gut–brain axis. Clin Nutr Exp 2016;6:25–38. 链接1

[106] Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care 2015;18:515–20. 链接1

[107] Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota–gut–brain axis: diet, microbiome, and neuropsychiatry. Transl Res 2017;179:223–44. 链接1

[108] Del Chierico F, Vernocchi P, Dallapiccola B, Putignani L. Mediterranean diet and health: food effects on gut microbiota and disease control. Int J Mol Sci 2014;15:11678–99. 链接1

[109] Marlow G, Ellett S, Ferguson IR, Zhu ST, Karunasinghe N, Jesuthasan AC, et al. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum Genomics 2013;7:24. 链接1

[110] Glick-Bauer M, Yeh MC. The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 2014;6:4822–38. 链接1

[111] Matijasic BB, Obermajer T, Lipoglavsek L, Grabnar I, Avgustin G, Rogelj I, et al. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr 2014;53(4):1051–64. 链接1

[112] De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107 (33):14691–6. 链接1

[113] Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334 (6052):105–8. 链接1

相关研究