期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第4期 doi: 10.1016/j.eng.2019.08.008

GC/LC-Q-TOFMS 两种技术联用同时筛查水果蔬菜中733 种农药残留

a Chinese Academy of Inspection and Quarantine, Beijing 100176, China
b College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
c Beijing Uni-Star Inspection Technology Co. Ltd., Beijing 100176, China

发布日期: 2019-08-28

下一篇 上一篇

摘要

本文通过创建LC-Q-TOFMS(525种农药)和GC-Q-TOFMS(485种农药和209种PCBs)两大精确质谱数数据库,开发了一次样品制备、两种高分辨质谱联用同时检测733种农药化学污染物残留的检测方法。通过8种代表性水果蔬菜对联用技术的筛查农药范围、灵敏度、回收率和重现性等方法效能评价,显示出这项联用技术有三方面优势:①两种技术联用与单种技术相比,其发现能力分别提高了51.1%(GC-Q-TOFMS,485种)和39.6%(LC-Q-TOFMS,525种);②联用技术能够满足78%的农药筛查限(SDL)低于10 μg·kg–1,满足国际“一律标准”的筛查要求,部分农药可根据技术优选最佳SDL,进一步提高方法的灵敏度;③联用技术在8种基质中符合回收率60%~120%且RSD<20%的农药数量远高于单一技术,方法的精确性明显提高。2012—2017年两种技术联用对中国31个省(自治区、直辖市)和14个果蔬产区1384个采样点18类134种果蔬38 138例样品,进行疑似农药的筛查,两种技术联用合计检出农药533种,检出频次115 891频次,初步查清了中国市售果蔬农药残留的规律性特征。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Srivastava A, Rai S, Kumar Sonker A, Karsauliya K, Pandey CP, Singh SP. Simultaneous determination of multiclass pesticide residues in human plasma using a mini QuEChERS method. Anal Bioanal Chem 2017;409(15):3757–65. 链接1

[ 2 ] Qin G, Zou K, Li Y, Chen Y, He F, Ding G. Pesticide residue determination in vegetables from western China applying gas chromatography with mass spectrometry. Biomed Chromatogr 2016;30(9):1430–40. 链接1

[ 3 ] Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 2013;268(2):157–77. 链接1

[ 4 ] Guan H, Brewer WE, Garris ST, Morgan SL. Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. J Chromatogr A 2010;1217(12):1867–74. 链接1

[ 5 ] Hercegová A, Dömötörová M, Matisová E. Sample preparation methods in the analysis of pesticide residues in baby food with subsequent chromatographic determination. J Chromatogr A 2007;1153(1–2):54–73. 链接1

[ 6 ] Alamgir ZCM, Fakhruddin ANM, Nazrul Islam M, Moniruzzaman M, Gan SH, Khorshed Alam M. Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography–mass spectrometry. Food Control 2013;34:457–65. 链接1

[ 7 ] Fernández-Alba AR, García-Reyes JF. Large-scale multi-residue methods for pesticides and their degradation products in food by advanced LC–MS. Trends Analyt Chem 2008;27(11):973–90. 链接1

[ 8 ] Machado I, Gérez N, Pistón M, Heinzen H, Cesio MV. Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chem 2017;227:227–36. 链接1

[ 9 ] Lee J, Kim L, Shin Y, Lee J, Lee J, Kim E, et al. Rapid and simultaneous analysis of 360 pesticides in brown rice, spinach, orange, and potato using microbore GC– MS/MS. J Agric Food Chem 2017;65(16):3387–95. 链接1

[10] Safari M, Yamini Y, Tahmasebi E, Ebrahimpour B. Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchim Acta 2016;183 (1):203–10. 链接1

[11] Wang P, Rashid M, Liu J, Hu M, Zhong G. Identification of multi-insecticide residues using GC–NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils. Food Chem 2016;212:420–6. 链接1

[12] Mogaddam MRA, Ghorbanpour H. Development of a new microextraction method based on elevated temperature dispersive liquid–liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection. J Chromatogr A 2014;1347:8–16. 链接1

[13] Jia G, Lv C, Zhu W, Qiu J, Wang X, Zhou Z. Applicability of cloud point extraction coupled with microwave-assisted back-extraction to the determination of organophosphorous pesticides in human urine by gas chromatography with flame photometry detection. J Hazard Mater 2008;159(2–3):300–5. 链接1

[14] de Perre C, Whiting SA, Lydy MJ. A simultaneous extraction method for organophosphate, pyrethroid, and neonicotinoid insecticides in aqueous samples. Arch Environ Contam Toxicol 2015;68(4):745–56. 链接1

[15] Wang J, Qiu H, Shen H, Pan J, Dai X, Yan Y, et al. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection kcyhalothrin in environmental water. Biosens Bioelectron 2016;85:387–94. 链接1

[16] Pang GF, Fan CL, Chang QY, Li Y, Kang J, Chen H. Track SCI papers published over the past 20 years to witness worldwide pesticide residue analysis. Chin Food Sci 2012;33(1):1–7. Chinese. 链接1

[17] Kolli VS, Orlando R. A new strategy for MALDI on magnetic sector mass spectrometers with point detectors. Anal Chem 1997;69(3):327–32. 链接1

[18] Campuzano IDG, Li H, Bagal D, Lippens JL, Svitel J, Kurzeja RJM, et al. Native MS analysis of bacteriorhodopsin and an empty nanodisc by orthogonal acceleration time-of-flight, orbitrap and ion cyclotron resonance. Anal Chem 2016;88(24):12427–36. 链接1

[19] Dziekonski ET, Johnson JT, McLuckey SA. Utility of higher harmonics in electrospray ionization Fourier transform electrostatic linear ion trap mass spectrometry. Anal Chem 2017;89(8):4392–7. 链接1

[20] Comeau AN, Liu J, Khadka CB, Corrigan JF, Konermann L. Nanocluster isotope distributions measured by electrospray time-of-flight mass spectrometry. Anal Chem 2013;85(2):1200–7. 链接1

[21] Zhou X, Meng X, Cheng L, Su C, Sun Y, Sun L, et al. Development and application of an MSALL-based approach for the quantitative analysis of linear polyethylene glycols in rat plasma by liquid chromatography triplequadrupole/time-of-flight mass spectrometry. Anal Chem 2017;89 (10):5193–200. 链接1

[22] Zhang F, Wang H, Zhang L, Zhang J, Fan R, Yu C, et al. Suspected-target pesticide screening using gas chromatography-quadrupole time-of-flight mass spectrometry with high resolution deconvolution and retention index/mass spectrum library. Talanta 2014;128:156–63. 链接1

[23] Wang Z, Cao Y, Ge N, Liu X, Chang Q, Fan C, et al. Wide-scope screening of pesticides in fruits and vegetables using information-dependent acquisition employing UHPLC–Q-TOFMS and automated MS/MS library searching. Anal Bioanal Chem 2016;408(27):7795–810. 链接1

[24] Cheng Z, Dong F, Xu J, Liu X, Wu X, Chen Z, et al. Simultaneous determination of organophosphorus pesticides in fruits and vegetables using atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry. Food Chem 2017;231:365–73. 链接1

[25] Qi P, Yuan Y, Wang Z, Wang X, Xu H, Zhang H, et al. Use of liquid chromatography-quadrupole time-of-flight mass spectrometry for enantioselective separation and determination of pyrisoxazole in vegetables, strawberry and soil. J Chromatogr A 2016;1449:62–70. 链接1

[26] Cherta L, Portolés T, Pitarch E, Beltran J, López FJ, Calatayud C, et al. Analytical strategy based on the combination of gas chromatography coupled to time-of- flight and hybrid quadrupole time-of-flight mass analyzers for non-target analysis in food packaging. Food Chem 2015;188:301–8. 链接1

[27] Cervera MI, Portolés T, López FJ, Beltrán J, Hernández F. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography-quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem 2014;406 (27):6843–55. 链接1

[28] Hernández F, Ibáñez M, Sancho JV, Pozo OJ. Comparison of different mass spectrometric techniques combined with liquid chromatography for confirmation of pesticides in environmental water based on the use of identification points. Anal Chem 2004;76(15):4349–57. 链接1

[29] Grimalt S, Pozo ÓJ, Sancho JV, Hernández F. Use of liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to investigate pesticide residues in fruits. Anal Chem 2007;79(7):2833–43. 链接1

[30] Wang J, Leung D. Applications of ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry on analysis of 138 pesticides in fruit- and vegetable-based infant foods. J Agric Food Chem 2009;57(6):2162–73. 链接1

[31] Portolés T, Sancho JV, Hernández F, Newton A, Hancock P. Potential of atmospheric pressure chemical ionization source in GC–Q-TOFMS for pesticide residue analysis. J Mass Spectrom 2010;45(8):926–36. 链接1

[32] Zhang F, Yu C, Wang W, Fan R, Zhang Z, Guo Y. Rapid simultaneous screening and identification of multiple pesticide residues in vegetables. Anal Chim Acta 2012;757:39–47. 链接1

[33] Portolés T, Mol JGJ, Sancho JV, López FJ, Hernández F. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization. Anal Chim Acta 2014;838: 76–85. 链接1

[34] Nácher-Mestre J, Serrano R, Portolés T, Berntssen MHG, Pérez-Sánchez J, Hernández F. Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization. J Agric Food Chem 2014;62(10):2165–74. 链接1

[35] Pang GF, Fan CL, Chang QY, Li JX, Kang J, Lu ML. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-timeof-flight mass spectrometry based on TOF accurate mass database and QTOF spectrum library. J AOAC Int 2018;101(4):1156–82. 链接1

[36] Li JX, Li XY, Chang QY, Li Y, Jin LH, Pang GF, et al. Screening of 439 pesticide residues in fruits and vegetables by gas chromatography-quadrupole-time-of- flight mass spectrometry based on TOF accurate mass database and Q-TOF spectrum library. J AOAC Int 2018;101(5):1631–8. 链接1

相关研究