期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第8期 doi: 10.1016/j.eng.2019.09.001

基于2013年、2015年和2017年星载BDS/GPS观测数据的FY-3C卫星精密轨道确定

a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
b German Research Centre for Geosciences (GFZ), Potsdam 14473, Germany
c National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
d Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China

收稿日期: 2018-07-26 修回日期: 2018-11-13 录用日期: 2019-03-25 发布日期: 2019-09-05

下一篇 上一篇

摘要

本文基于2013—2017年FY-3C卫星星载BDS和GPS观测数据,研究了星载BDS的定轨性能及其对低轨卫星精密定轨的贡献。结果显示,改正BDS卫星码偏差可以提高低轨卫星定轨精度,提升幅度可达12.4%。2013年、2015年和2017年的FY-3C卫星单GPS定轨的重叠轨道差异平均一维均方根(1D RMS)分别为2.0 cm、1.7 cm和1.5 cm。由于BDS二代区域系统和FY-3C较少的BDS跟踪通道,FY-3C卫星单BDS定轨的精度要远差于单GPS定轨,其2013年、2015年和2017年重叠轨道1D RMS分别为150.9 cm、115.0 cm和47.4 cm。对于BDS+GPS (GC)双系统定轨,FY-3C卫星在2013年、2015年和2017年的重叠轨道精度分别为2.5 cm、2.3 cm和1.6 cm。当不采用BDS GEO卫星观测值后,GC双系统定轨精度得到了显著提高,这是因为GEO卫星本身卫星跟踪条件较差且其轨道钟差产品精度不高。得益于近年来IGS精密轨道钟差产品精度的不断提高,特别是2015年高采样率(30 s采样间隔)卫星钟差产品的发布,FY-3C卫星的单BDS和GC双系统定轨精度从2013年开始逐步提高。此外,在不考虑BDS GEO观测值的条件下,GC双系统定轨结果在2017年要略优于单GPS定轨,这一结果说明BDS和GPS双系统融合能够提高低轨卫星的定轨精度。同时,由于系统冗余,GC双系统能够显著提高低轨卫星定轨的可靠性。随着未来更多BDS卫星发射升空以及BDS卫星产品精度的不断提高,BDS卫星将会为低轨卫星精密定轨做出更大的贡献。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Tapley BD, Ries JC, Davis GW, Eanes RJ, Schutz BE, Shum CK, et al. Precision orbit determination for TOPEX/POSEIDON. J Geophys Res Oceans 1994;99 (C12):24383–404. 链接1

[ 2 ] Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R. Precise orbit determination for the GRACE mission using only GPS data. J Geod 2006;80 (6):322–31. 链接1

[ 3 ] Bock H, Jäggi A, Meyer U, Visser P, van den Ijssel J, van Helleputte T, et al. GPSderived orbits for the GOCE satellite. J Geod 2011;85(11):807–18. 链接1

[ 4 ] van den Ijssel J, Encarnação J, Doornbos E, Visser P. Precise science orbits for the Swarm satellite constellation. Adv Space Res 2015;56(6):1042–55. 链接1

[ 5 ] Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, et al. Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 2013;87 (5):475–86. 链接1

[ 6 ] Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Sci Rep 2015;5:8328. 链接1

[ 7 ] Li P, Zhang X, Guo F. Ambiguity resolved precise point positioning with GPS and BeiDou. J Geod 2017;91(1):25–40. 链接1

[ 8 ] Xu A, Xu Z, Ge M, Xu X, Zhu H, Sui X. Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors 2013;13 (4):4514–26. 链接1

[ 9 ] Li M, Li W, Shi C, Zhao Q, Su X, Qu L, et al. Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach. Adv Space Res 2015;55(1):150–62. 链接1

[10] Li X, Zus F, Lu C, Dick G, Ning T, Ge M, et al. Retrieving of atmospheric parameters from multi-GNSS in real time: validation with water vapor radiometer and numerical weather model. J Geophys Res Atmos 2015;120 (14):7189–204. 链接1

[11] Li M, Li W, Shi C, Jiang K, Guo X, Dai X, et al. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations. J Geod 2017;91 (11):1313–27. 链接1

[12] Xiong C, Lu C, Zhu J, Ding H. Orbit determination using real tracking data from FY3C-GNOS. Adv Space Res 2017;60(3):543–56. 链接1

[13] Zhao Q, Wang C, Guo J, Yang G, Liao M, Ma H, et al. Enhanced orbit determination for BeiDou satellites with Fengyun-3C onboard GNSS data. GPS Solut 2017;21(3):1179–90. 链接1

[14] Cai Y, Bai W, Wang X, Sun Y, Du Q, Zhao D, et al. In-orbit performance of GNOS on-board FY3-C and the enhancements for FY3-D satellite. Adv Space Res 2017;60(12):2812–21. 链接1

[15] Dow JM, Neilan RE, Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 2009;83(3–4):191–8. 链接1

[16] Guo J, Xu X, Zhao Q, Liu J. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 2016;90(2):143–59. 链接1

[17] Uhlemann M, Gendt G, Ramatschi M, Deng Z. GFZ global multi-GNSS network and data processing results. In: Rizos C, Willis P, editors. IAG 150 years: Proceedings of the IAG Scientific Assembly; 2013 Sep 1–6; Postdam, Germany. Cham: Springer; 2015. p. 673–9. 链接1

[18] Schmid R, Dach R, Collilieux X, Jäggi A, Schmitz M, Dilssner F. Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod 2016;90(4):343–64. 链接1

[19] Rebischung P, Schmid R. IGS14/igs14.atx: a new framework for the IGS products. American Geophysical Union Fall Meeting 2016; 2016 Dec 12–16; San Francisco, CA, USA, 2016. 链接1

[20] Dilssner F, Springer T, Schönemann E, Enderle W. Estimation of satellite Antenna Phase Center corrections for BeiDou. International GNSS Service Workshop 2014; 2014 June 23–27; Pasadena, CA, USA, 2014. 链接1

[21] Berger C, Biancale R, Ill M, Barlier F. Improvement of the empirical thermospheric model DTM: DTM94—a comparative review of various temporal variations and prospects in space geodesy applications. J Geod 1998;72(3):161–78. 链接1

[22] Wanninger L, Beer S. BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solut 2015;19(4):639–48. 链接1

相关研究