期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第6期 doi: 10.1016/j.eng.2019.09.007

对双层组件4D打印可逆性的初步研究

a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
639798, Singapore
b Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore

收稿日期: 2019-01-31 修回日期: 2019-05-09 录用日期: 2019-05-29 发布日期: 2019-09-29

下一篇 上一篇

摘要

增材制造的快速发展和形状记忆聚合物材料的进步推动了四维(4D)打印技术的进展。随着设计方面的不断改进,逐渐证明有可能实现可逆4D打印或双向4D打印。这项技术将完全消除对人为干预的需要,因为编程完全由外部刺激驱动,这使得4D打印部件可以在多个周期内启动。本研究提出了一种新的可逆4D打印驱动方法,其中弹性体的溶胀和热量用于编程阶段,以及热量用于恢复阶段。本研究的主要重点在于自驱动设计这一步骤。为了实现对弯曲的控制,已经开发了一种简单的预测模型用于研究曲率。此外,为了更好地了解模型对曲率的预测程度,对参数、温度和弹性体厚度也进行了研究。采用这种方式理解曲率可以提供对可逆4D打印结构的高度控制。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Tibbits S. 4D printing: multi-material shape change. Archit Des 2014;84 (1):116–21. 链接1

[ 2 ] Gardan J. Smart materials in additive manufacturing: state of the art and trends. Virtual Phys Prototyping 2019;14:1–18. 链接1

[ 3 ] Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, et al. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyping 2015;10(3):103–22. 链接1

[ 4 ] Chua CK, Leong KF. 3D printing and additive manufacturing: principles and applications—the 5th edition of rapid prototyping: principles and applications. Singapore: World Scientific Publishing Co Inc.; 2017. 链接1

[ 5 ] Lee AY, An J, Chua CK. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 2017;3(5):663–74. 链接1

[ 6 ] Li J, Rodgers WR, Xie T. Semi-crystalline two-way shape memory elastomer. Polymer 2011;52(23):5320–5. 链接1

[ 7 ] Naficy S, Gately R, Gorkin R, Xin H, Spinks GM. 4D printing of reversible shape morphing hydrogel structures. Macromol Mater Eng 2017;302(1):1600212. 链接1

[ 8 ] Su JW, Tao X, Deng H, Zhang C, Jiang S, Lin Y, et al. 4D printing of a selfmorphing polymer driven by a swellable guest medium. Soft Matter 2018;14 (5):765–72. 链接1

[ 9 ] Huang L, Jiang R, Wu J, Song J, Bai H, Li B, et al. Ultrafast digital printing toward 4D shape changing materials. Adv Mater 2017;29(7):1605390. 链接1

[10] Mao Y, Ding Z, Yuan C, Ai S, Isakov M, Wu J, et al. 3D printed reversible shape changing components with stimuli responsive materials. Sci Rep 2016;6:24761. 链接1

[11] Ula SW, Traugutt NA, Volpe RH, Patel RR, Yu K, Yakacki CM. Liquid crystal elastomers: an introduction and review of emerging technologies. Liq Cryst Rev 2018;6:78–107. 链接1

[12] Wu X, Huang WM, Zhao Y, Ding Z, Tang C, Zhang J. Mechanisms of the shape memory effect in polymeric materials. Polymers 2013;5(4):1169–202. 链接1

[13] Ratna D, Karger-Kocsis J. Recent advances in shape memory polymers and composites: a review. J Mater Sci 2008;43(1):254–69. 链接1

[14] Treloar LRG. The elasticity and related properties of rubbers. Rep Prog Phys 1973;36(7):755–826. 链接1

[15] Qamar SZ, Akhtar M, Pervez T, Al-Kharusi MSM. Mechanical and structural behavior of a swelling elastomer under compressive loading. Mater Des 2013;45:487–96. 链接1

[16] Cai S, Lou Y, Ganguly P, Robisson A, Suo Z. Force generated by a swelling elastomer subject to constraint. J Appl Phys 2010;107(10):103535. 链接1

[17] Seehra MS, Yalamanchi M, Singh V. Structural characteristics and swelling mechanism of two commercial nitrile-butadiene elastomers in various fluids. Polym Test 2012;31(4):564–71. 链接1

[18] Dhaliwal JS, Negi MS, Kapur GS, Kant S. Compatibility studies on elastomers and polymers with ethanol blended gasoline. J Fuels 2014;2014:1–8. 链接1

[19] McCann MP. Physical chemistry CD (Laidler, Keith James; Meiser, John H.; Sanctuary, Bryan C.). J Chem Educ 2003;80(5):489. 链接1

[20] Kosiyanon R, McGregor R. Free volume theory of diffusion: method of predicting activation energies of diffusion for gases in elastomers. J Appl Polym Sci 1981;26(2):629–41. 链接1

[21] Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci Adv 2017;3(4):e1602890. 链接1

[22] Fullcure material. Vero family [Internet]. Utah: GoEngineer; c2019 [cited 2019 Jan 31]. Available from: https://www.goengineer.com/products/vero-family/. 链接1

[23] Mettler-Toledo AG. Operating instructions: excellence balance XS models— part 2. Geifensee: Mettler-Toledo AG Laboratory & Weighing Technologies; 2010.

[24] Flory PJ, Rehner J Jr. Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 1943;11(11):521–6. 链接1

[25] Fick A. On liquid diffusion. J Membr Sci 1995;100(1):33–8. 链接1

[26] Siepmann J, Podual K, Sriwongjanya M, Peppas NA, Bodmeier R. A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets. J Pharm Sci 1999;88(1):65–72. 链接1

[27] Orwoll RA, Arnold PA. Polymer–solvent interaction parameter. In: Mark JE, editor. Physical properties of polymers handbook. New York: Springer; 2007. p. 233–57. 链接1

[28] Utracki LA. Thermodynamics of polymer blends. In: Utracki LA, editor. Polymer blends handbook. Dordrech: Springer; 2003. p. 123–201. 链接1

[29] Czerner M, Fellay LS, Suárez MP, Frontini PM, Fasce LA. Determination of elastic modulus of gelatin gels by indentation experiments. Proc Mater Sci 2015;8:287–96. 链接1

[30] Teoh JEM, An J, Feng X, Zhao Y, Chua CK, Liu Y. Design and 4D printing of crossfolded origami structures: a preliminary investigation. Materials 2018;11 (3):376. 链接1

[31] Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct 2014;23(9):094007. 链接1

[32] An J, Chua CK, Mironov V. A perspective on 4D bioprinting. Int J Bioprint 2016;2(1):3–5. 链接1

[33] Tan C, Toh WY, Wong G, Lin L. Extrusion-based 3D food printing—materials and machines. Int J Bioprinting 2018;4(2):143. 链接1

[34] Voon SL, An J, Wong G, Zhang Y, Chua CK. 3D food printing: a categorised review of inks and their development. Virtual Phys Prototyping 2019;14 (3):203–18. 链接1

[35] Lepowsky E, Tasoglu S. 3D printing for drug manufacturing: a perspective on the future of pharmaceuticals. Int J Bioprint 2018;4(1):119. 链接1

相关研究