期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第5期 doi: 10.1016/j.eng.2019.09.008

基于RNA的生物防治——一种作物保护新模式

a Syngenta Ghent Innovation Center, Gent-Zwijnaarde 9052, Belgium
b Syngenta Crop Protection AG, Basel CH-4002, Switzerland

收稿日期: 2019-01-27 修回日期: 2019-08-29 录用日期: 2019-09-20 发布日期: 2019-12-19

下一篇 上一篇

摘要

 现代农业企业在保障和提高食品、饲料、纤维和燃料的生产、质量和数量方面发挥着至关重要的作用。人们对化学农药对健康和环境造成影响的日益关注,促使该行业寻求替代性和更环保的方案。在过去的几年中,RNA干扰(RNAi)过程被认为是一种非常有前景的新方法,可作为化学和生物害虫防治剂、植物保护剂等叶面喷施、土壤或种子处理的补充。基于RNA的活性成分(AI)具有独特的作用方式,可以通过基因修饰(GM)和生物防治两种途径来实现。由于基于RNA的AI可利用自然过程来发挥控制作用,同时它们具有高度选择性,降低了非目标生物(NTO)的风险,因此基于RNA的AI有望提供未来作物保护剂所需要的选择性和可持续性。本文讨论了基于RNA的生物防治的替代方案在作物保护中的优势和局限性,以及RNA生物防治科罗拉多马铃薯甲虫(CPB)、玉米根虫(CRW)和大豆臭虫(SSB)的最新研究进展。在实现各种基于RNA的产品及其广泛使用和应用的道路上,仍然存在许多挑战。尽管如此,我们仍可预期到,基于RNA的AI将成为有价值的新工具,以补充当前的农作物保护解决方案。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Maienfisch P, Stevenson TM. Modern agribusiness-markets, companies, benefits and challenges in discovery and synthesis of crop protection. In: Maienfisch P, Stevenson TM, editors. Discovery and synthesis of crop protection products. Washington, DC: American Chemical Society; 2015. p. 1–13. 链接1

[ 2 ] Philipps McDougall agribusiness [Internet]. London: IHS Markit; c2020 [cited 2019 Jan 3]. Available from: https://phillipsmcdougall.agribusiness. ihsmarkit.com. 链接1

[ 3 ] Biologicals 2018—an analysis of corporate, product and regulatory news in 2017/2018 [Internet]. London: IHS Markit; c2020 [cited 2019 Jan 3]. Available from: https://agrow.agribusinessintelligence.informa.com/-/media/agri/agrow/ ag-market-reviews-pdfs/supplements/agrow_biologicals_2018_online.pdf. 链接1

[ 4 ] Marshall P. Agricultural biologicals today and tomorrow: potential and regulations [Internet]. Ottawa: Canadian Seed Trade Association; c2020 [cited 2019 Jan 3]. Available from: https://seedinnovation.ca/wp-content/uploads/ 2015/07/Agricultural-Biologicals-today-and-tomorrow-Pete-Marshall.pdf. 链接1

[ 5 ] Marketsandmarkets.com [Internet]. Biopesticides market research report; c2009–2019 [cited 2019 Jan 3]. Available from: https://www. marketsandmarkets.com/ Market-Reports/biopesticides-267.html. 链接1

[ 6 ] Price DRG, Gatehouse JA. RNAi-mediated crop protection against insects. Trends Biotechnol 2008;26(7):393–400. 链接1

[ 7 ] Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM. The evolution of RNAi as a defense against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009;364(1513):99–115. 链接1

[ 8 ] Elliott D, Ladomery M. Molecular biology of RNA. Oxford: Oxford University Press; 2011. 链接1

[ 9 ] Mamta B, Rajam MV. RNAi technology: a new platform for crop pest control. Physiol Mol Biol Plants 2017;23(3):487–501. 链接1

[10] Stach JEM, Good L. Synthetic RNA silencing in bacteria-antimicrobial discovery and resistance breaking. Front Microbiol 2011;2:185. 链接1

[11] McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002;3(10):734–47. 链接1

[12] Auer C, Frederick R. Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 2009;27 (11):644–51. 链接1

[13] Burand JP, Hunter WB. RNAi: future in insect management. J Invertebr Pathol 2013;112(Suppl):S68–74. 链接1

[14] Younis A, Siddique MI, Kim CK, Lim KB. RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Bilo Sci 2014;10(10):1150–8. 链接1

[15] Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 2015;347(6225):991–4. 链接1

[16] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425(6956):415–9. 链接1

[17] Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol 2007;25 (11):1322–6. 链接1

[18] Shen W, Yang G, Chen Y, Yan P, Tuo D, Li X, et al. Resistance of non-transgenic papaya plants to Papaya ringspot virus (PRSV) mediated by intron-containing hairpin dsRNAs expressed in bacteria. Acta Virol 2014;58(3):261–6. 链接1

[19] Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, Malinowski T, et al. Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum—from concept to product. Plant Cell Tiss Organ Cult 2013;115(1):1–12. 链接1

[20] Gupta A, Pal RK, Rajam MV. Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1- aminopropane-1-carboxylate synthase gene. J Plant Physiol 2013;170 (11):987–95. 链接1

[21] Head GP, Carroll MW, Evans SP, Rule DM, Willse AR, Clark TL, et al. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci 2017;73(9):1883–99. 链接1

[22] Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Molec 2009;39(11):824–32. 链接1

[23] Jalaluddin NSM, Othman RY, Harikrishna JA. Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops. Crit Rev Biotechnol 2018;39(1):67–78. 链接1

[24] Palli SR. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr Opin Insect Sci 2014;6:1–8. 链接1

[25] Luo Y, Chen Q, Luan J, Chung JL, Eck JV, Turgeon R, et al. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Insect Biochem Mol Biol 2017;88:21–9. 链接1

[26] Yu XD, Liu ZC, Huang SL, Chen ZQ, Sun YW, Duan PF, et al. RNAi-mediated plant protection against aphids. Pest Manag Sci 2016;72(6):1090–8. 链接1

[27] Christiaens O, Smagghe G. The challenge of RNAi-mediated control of hemipterans. Curr Opin Insect Sci 2014;6:15–21. 链接1

[28] Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, et al. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 2011;57(2):231–45. 链接1

[29] Choi MY, Vander Meer RK. Phenotypic effects of PBAN RNAi using oral delivery of dsRNA to corn earworm (Lepidoptera: Noctuidae) and tobacco budworm larvae. J Econ Entomol 2018;112(1):434–9. 链接1

[30] Wang J, Gu L, Knipple DC. Evaluation of some potential target genes and methods for RNAi-mediated pest control of the corn earworm Helicoverpa zea. Pestic Biochem Physiol 2018;149:67–72. 链接1

[31] Mogilicherla K, Howell JL, Palli SR. Improving RNAi in the brown marmorated stink bug: identification of target genes and reference genes for RT-qPCR. Sci Rep 2018;8(1):3720. 链接1

[32] Kwon DH, Park JH, Lee SH. Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. Pestic Biochem Physiol 2013;105(1):69–75. 链接1

[33] Garbian Y, Maori E, Kalev H, Shafir S, Sela I. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathog 2012;8(12):e1003035. 链接1

[34] Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W, Pleau M, et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 2018;13(5):e0197059. 链接1

[35] Dubelman S, Fischer J, Zapata F, Huizinga K, Jiang C, Uffman J, et al. Environmental fate of double-stranded RNA in agricultural soils. PLoS ONE 2014;9(3):e93155. 链接1

[36] Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Manage Sci 2019;75(2):537–48. 链接1

[37] Christiaens O, Tardajos MG, Martinez Reyna ZL, Dash M, Dubruel P, Smagghe G. Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front Physiol 2018;9:316. 链接1

[38] Lomate PR, Bonning BC. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula. Sci Rep 2016;6:27587. 链接1

相关研究