期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第2期 doi: 10.1016/j.eng.2019.09.012

光刻机小型复合节流静压气浮导轨微结构参数设计

a Center of Ultra-Precision Optoelectronic Instrumentation Engineering, Harbin Institute of Technology, Harbin 150001, China
b Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry Information Technology, Harbin 150080, China

收稿日期: 2019-06-30 修回日期: 2019-09-11 录用日期: 2019-10-09 发布日期: 2020-07-30

下一篇 上一篇

摘要

在光刻机可变狭缝系统(VS)中,紧凑型复合节流静压气浮导轨是实现高精度、高加速度运动的首选结构。研究表明,导轨气浮工作面上加工浅腔、凹槽等微结构可以改善负载性能。然而,微结构微米级变化对导轨性能的影响尚不清晰。文中采用作者提出的网格自适应法,定量研究了微结构四个参数的影响,揭示了微结构变化对导轨负载性能的影响规律,并利用这些规律对微结构参数进行设计。设计方法的特点在于:通过调节浅腔参数,使承载力、刚度和转动刚度的工作点都统一起来。采用文中的设计流程和调整方法,可以在一定程度上缓解供气压力的限制和各项负载性能间的相互制约。实验结果表明,采用该方法所设计导轨的转动刚度达到2.14 × 104 Nm·rad–1,提高了69.8%。在ArF光刻机上的VS上对气浮导轨进行加速扫描实验,平均扫描加速度达到67.5 m·s–2
达到了设计要求。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

参考文献

[ 1 ] Yang P, Takamura T, Takahashi S, Takamasu K, Sato O, Osawa S, Takatsuji T. Development of high-precision micro-coordinate measuring machine: multiprobe measurement system for measuring yaw and straightness motion error of XY linear stage. Precis Eng 2011;35(3):424–30. 链接1

[ 2 ] Qi E, Fang Z, Sun T, Chen J, Liu C, Wang J. A method for predicting hydrostatic guide error averaging effects based on three-dimensional profile error. Tribol Int 2016;95:279–89. 链接1

[ 3 ] Levinson HJ. Principles of lithography. 3rd ed. Bellingham: Society of PhotoOptical Instrumentation Engineers; 2010. 链接1

[ 4 ] Mizoguchi H, Nakarai H, Abe T, Ohta T, Nowak KM, Kawasuji Y, et al. LPP-EUV light source development for high volume manufacturing lithography. In: Proceedings of the 2013 SPIE Advanced Lithography; 2013 Feb 24–28; San Jose, CA, USA; 2013. p. 1–11.

[ 5 ] Zhong B, Bai B, Li J, Zhang Y, Fu Y. Hierarchical tracking by reinforcement learning-based searching and coarse-to-fine verifying. IEEE Trans Image Process 2019;28(5):2331–41. 链接1

[ 6 ] Laidler D, D’havé K, Hermans J, Cheng S. Mix and match overlay optimization strategy for advanced lithography tools (193i and EUV). In: Proceedings of the 2012 SPIE Advanced Lithography; 2012 Feb 13–15; San Jose, CA, USA; 2012. p. 1–11.

[ 7 ] Lai K, Liu C, Pitera J, Dechene DJ, Schepis A, Abdallah J, et al. Computational aspects of optical lithography extension by directed self-assembly. In: Proceedings of the 2013 SPIE Advanced Lithography; 2013 Feb 24–28; San Jose, CA, USA; 2013. p. 1–13.

[ 8 ] Lin Y, Zhong B, Li G, Zhao S, Chen Z, Fan W. Localization-aware meta tracker guided with adversarial features. IEEE Access 2019;7:99441–50. 链接1

[ 9 ] Peeters R, Lok S, van Alphen E, Harned N, Kuerz P, Lowisch M, et al. ASML’s NXE platform performance and volume introduction. In: Proceedings of the 2013 SPIE Advanced Lithography; 2013 Feb 24–28; San Jose, CA, USA; 2013. p. 1–8.

[10] Zhang W, Gong Y. Vector analysis of diffractive optical elements for off-axis illumination of projection lithographic system. Acta Opt Sin 2011;31 (10):1005002. Chinese.

[11] Raghunathan S, Munder A, Hartley J, Sohn J, Orvek K. Correlation of overlay performance and reticle substrate non-flatness effects in EUV lithography. In: Proceedings of the 2009 SPIE Photomask Technology; 2009 Sept 14–17; Monterey, CA, USA; 2009. p. 1–9.

[12] Tanaka Y, Hara T, Kitamura H, Ishikawa T. Synchronization of picosecond laser pulses to the target X-ray pulses at SPring-8. Nucl Instrum Methods Phys Res A 2001;467–468(Pt 2):1451–4.

[13] Taghizadeh MR, Blair P, Layet B, Barton IM, Waddie AJ, Ross N. Design and fabrication of diffractive optical elements. Microelectron Eng 1997;34(3– 4):219–42. 链接1

[14] Broers AN. Resolution, overlay, and field size for lithography systems. IEEE Trans Electron Devices 1981;28(11):1268–78. 链接1

[15] Nakamura T, Yoshimoto S. Static tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribol Int 1996;29 (2):145–52. 链接1

[16] Nakamura T, Yoshimoto S. Static tilt characteristics of aerostatic rectangular double-pad thrust bearings with double row admissions. Tribol Int 1997;30 (8):605–11. 链接1

[17] Belforte G, Colombo F, Raparelli T, Trivella A, Viktorov V. Comparison between grooved and plane aerostatic thrust bearings: static performance. Meccanica 2011;46(3):547–55.

[18] Liu T, Li YT, Liu YH, et al. [Aerostatic lubrication]. Harbin: Harbin Institute of Technology Press; 1998. Chinese.

[19] Rowe WB. Hydrostatic, aerostatic and hybrid bearing design. Oxford: Butterworth-Heinemann; 2013. 链接1

[20] Kim JY, Ghajar AJ, Tang C, Foutch GL. Comparison of near-wall treatment methods for high Reynolds number backward-facing step flow. Int J Comput Fluid Dyn 2005;19(7):493–500.

[21] Gharbi EN, Absi R, Benzaoui A, Amara EH. Effect of near-wall treatment on airflow simulation. In: Proceedings of the 2009 International Conference on Computational Methods for Energy Engineering and Environment; 2009 Nov 20–22; Sousse, Tunisia; 2009.

[22] Eleshaky ME. CFD investigation of pressure depressions in aerostatic circular thrust bearings. Tribol Int 2009;42(7):1108–17. 链接1

[23] Zhang J, Zou D, Ta N, Rao Z. Numerical research of pressure depression in aerostatic thrust bearing with inherent orifice. Tribol Int 2018;123:385–96. 链接1

[24] Gao S, Cheng K, Chen S, Ding H, Fu H. CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultrahigh speed spindles. Tribol Int 2015;92:211–21. 链接1

[25] Aoyama T, Kakinuma Y, Kobayashi Y. Numerical and experimental analysis for the small vibration of aerostatic guideways. CIRP Ann 2006;55(1):419–22. 链接1

[26] Aoyama T, Koizumi K, Kakinuma Y, Kobayashi Y. Numerical and experimental analysis of transient state micro-bounce of aerostatic guideways caused by small pores. CIRP Ann 2009;58(1):367–70. 链接1

[27] Yadav SK, Sharma SC. Performance of hydrostatic tilted thrust pad bearings of various recess shapes operating with non-Newtonian lubricant. Finite Elem Anal Des 2014;87:43–55. 链接1

[28] Wen ZP, Wu JW, Zhang Y, Cui JW, Tan JB. Improving the rotational stiffness of compact aerostatic guideway by micro-structures optimization. IEEE Access 2019;7:55780–7. 链接1

[29] Wen ZP, Wu JW, Tan JB. An adaptive modeling method for multi-throttle aerostatic thrust bearing. Tribol Int 2020;149:105830.

[30] Geng YQ, Yan YD, Wang JQ, Brousseau E, Sun YW, Sun YZ. Fabrication of periodic nanostructures using AFM tip-based nanomachining: combining groove and material pile-up topographies. Engineering 2018;4(6): 787–95.

[31] Zhou Q, Zhong B, Zhang Y, Li J, Fu Y. Deep alignment network based multiperson tracking with occlusion and motion reasoning. IEEE Trans Multimed 2019;21(5):1183–94.

[32] Kim SE, Choudhury D, Patel B. Computations of complex turbulent flows using the commercial code fluent. In: Salas MD, Hefner JN, Sakell L, editors. Modeling complex turbulent flows. Dordrecht: Kluwer Academic Publishers; 1999. p. 259–76. 链接1

[33] Zhong B, Yao H, Chen S, Ji R, Chin TJ, Wang H. Visual tracking via weakly supervised learning from multiple imperfect oracles. Pattern Recognit 2014;47 (3):1395. 链接1

相关研究