期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第1期 doi: 10.1016/j.eng.2019.10.014

越南广平和顺化两省猪场分离副猪嗜血杆菌的抗生素耐药表型和耐药基因之间的相关性研究

a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan
430070, China
b Faculty of Animal Science and Veterinary Medicine, University of Agricultural and Forestry, Hue University, Hue 53000, Vietnam
c MienTrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
d Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
e Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
f International Research Center for Animal Diseases, the Ministry of Science and Technology, Wuhan 430070, China

收稿日期: 2018-12-12 修回日期: 2019-09-16 录用日期: 2019-10-08 发布日期: 2019-11-01

下一篇 上一篇

摘要

副猪嗜血杆菌是一种对全球养猪业造成重大经济损失的病原菌。副猪嗜血杆菌防控失败的原因之一是细菌耐药性不断加重。越南拥有亚洲排名第二的生猪产量,但是缺乏针对副猪嗜血杆菌耐药性的相关研究和数据。本研究的目的是调查越南副猪嗜血杆菌的耐药性,并分析耐药性和耐药性基因之间的关系。本研究所使用的副猪嗜血杆菌分离菌株来自我们之前研究中从越南广平省和顺化省猪场分离到的菌株。本研究分别利用肉汤微稀释法和聚合酶链反应(PCR)法检测了这些菌株对25种抗生素的耐药性及相关耐药基因的存在情况。结果显示,这些分离株对甲氧苄啶/磺胺甲恶唑的耐药率达高到94.6%,其次是黏菌素、氯霉素、庆大霉素、青霉素、林可霉素和阿莫西林。这些菌株中相关联耐药基因的检出率分别为blaTEM-1 94.6%、int 76.8%、gyrA 58.9%以及rmtD 50.0%。头孢呋辛、氯霉素和妥布霉素的耐药性表型分别与耐药基因blaROB-1 [优势比(OR) = 26.3, 95% 置信区间(CI)2.7~255.7, p = 0.002]、catl (OR = 25.1, 95% CI 2.4~258.9, p = 0.004)以及strB (OR = 23.5, 95% CI 2.6~212.6, p = 0.001)呈显著正相关。本研究首次揭示了越南中部地区副猪嗜血杆菌的耐药性情况,有助于该疾病的临床控制,能够为降低越南中部的养猪业中该菌的耐药性以及为相关政策制定和临床用药提供指导。

参考文献

[ 1 ] Oliveira S, Pijoan C. Diagnosis of Haemophilus parasuis in affected herds and use of epidemiological data to control disease. J Swine health produc 2002;10 (5):221–5. 链接1

[ 2 ] Oliveira S, Pijoan C. Haemophilus parasuis: new trends on diagnosis, epidemiology and control. Vet Microbiol 2004;99(1):1–12. 链接1

[ 3 ] Bouchet B, Vanier G, Jacques M, Gottschalk M. Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells. Vet Res 2008;39(5):42. 链接1

[ 4 ] Howell KJ, Weinert LA, Peters SE, Wang J, Hernandez-Garcia J, Chaudhuri RR, et al. ‘‘Pathotyping” multiplex PCR assay for Haemophilus parasuis: a tool for prediction of virulence. J Clin Microbiol 2017;55(9):2617–28. 链接1

[ 5 ] Rúbies X, Kielstein P, Costa L, Riera P, Artigas C, Espuña E. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997. Vete Microbiol 1999;66(3):245–8. 链接1

[ 6 ] Cu HP, Nguyen NN, Nguyen TH, Au XT, Nguyen BT, Vu NQ, et al. Determination the causes of respiratory disease in pigs rearing at some different provinces in the North Vietnam. Vet Sci Tech 2005;7(4):23–32. Vietnamese. 链接1

[ 7 ] Cai X, Chen H, Blackall PJ, Yin Z, Wang L, Liu Z, et al. Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol 2005;111(3):231–6. 链接1

[ 8 ] Smart NL, Miniats OP, Rosendal S, Friendship RM. Glasser’s disease and prevalence of subclinical infection with Haemophilus parasuis in swine in southern Ontario. Can Vet J 1989;30(4):339–43. 链接1

[ 9 ] Cromwell GL. Why and how antibiotics are used in swine production. Ani Biotechnol 2002;13(1):7–27. 链接1

[10] Blake DP, Humphry RW, Scott KP, Hillman K, Fenlon DR, Low JC. Influence of tetracycline exposure on tetracycline resistance and the carriage of tetracycline resistance genes within commensal Escherichia coli populations. J Appl Microbiol 2003;94(6):1087–97. 链接1

[11] Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. Corrigendum to ‘‘The global threat of antimicrobial resistance: science for intervention”. New Microb New Infec 2015;8(1):175. 链接1

[12] Aarestrup FM. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Int J Antimicrob Agents 1999;12(4):279–85. 链接1

[13] Brogden S, Pavlovic´ A, Tegeler R, Kaspar H, De Vaan N, Kehrenberg C. Antimicrobial susceptibility of Haemophilus parasuis isolates from Germany by use of a proposed standard method for harmonized testing. Vet Microbiol 2018;217(1):32–5. 链接1

[14] Aarestrup FM, Seyfarth AM, Angen O. Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark. Vet Microbiol 2004;101(2):143–6. 链接1

[15] De la Fuente AJM, Tucker AW, Navas J, Blanco M, Morris SJ, Gutiérrez-Martín CB. Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain. Vet Microbiol 2007;120(1):184–91. 链接1

[16] Zhou X, Xu X, Zhao Y, Chen P, Zhang X, Chen H, et al. Distribution of antimicrobial resistance among different serovars of Haemophilus parasuis isolates. Vet Microbiol 2010;141(1–2):168–73. 链接1

[17] Zhao Y, Guo L, Li J, Huang X, Fang B. Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China. PeerJ 2018;6(1):e4613. 链接1

[18] Guo LL, Zhang JM, Xu CG, Ren T, Zhang B, Chen Jd, et al. Detection and characterization of b-lactam resistance in Haemophilus parasuis strains from pigs in South China. J of Integrati Agri 2012;11(1):116–21. 链接1

[19] Hu Z, Li J, Hu S, Wang Y, Yuan X, Xu L. Phenotype and genotype analysis of antibiotic resistance of Haemophilus parasuis isolated from the scaled pig farms in Zhejiang Province. Acta Agri Boreali Sin 2013;28(4):228–33. Chinese. 链接1

[20] Zhang Q, Zhou M, Song D, Zhao J, Zhang A, Jin M. Molecular characterisation of resistance to fluoroquinolones in Haemophilus parasuis isolated from China. Inter J Anti Agen 2013;42(1):87–9. 链接1

[21] Van CN, Thanh TVT, Zou G, Jia M, Wang Q, Zhang L, et al. Characterization of serotypes and virulence genes of Haemophilus parasuis isolates from Central Vietnam. Vet Microbiol 2019;230(1):117–22. 链接1

[22] Clinical and Laboratory Standards Institute. Performance Standards for antimicrobial susceptibility testing. 26th ed. Wayne: Clinical and Laboratory Standards Institute; 2016. 链接1

[23] Lanz R, Kuhnert P, Boerlin P. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 2003;91(1):73–84. 链接1

[24] Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 2007;45(1):88–94. 链接1

[25] Dayao D, Gibson JS, Blackall PJ, Turni C. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust Vet J 2016;94(7):227–31. 链接1

[26] Guo L, Zhang J, Xu C, Zhao Y, Ren T, Zhang B, et al. Molecular characterization of fluoroquinolone resistance in Haemophilus parasuis isolated from pigs in South China. J Antimicrob Agents Chemother 2011;66(3):539–42. 链接1

[27] Keyes K, Hudson C, Maurer JJ, Thayer S, White DG, Lee MD. Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens. J Antimicrob Agents Chemother 2000;44(2):421–4. 链接1

[28] Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. J Antimicrob Agents Chemother 2006;50(4):1156–63. 链接1

[29] Chen LP, Cai XW, Wang XR, Zhou XL, Wu DF, Xu XJ, et al. Characterization of plasmid-mediated lincosamide resistance in a field isolate of Haemophilus parasuis. J Antimicrob Agents Chemother 2010;65(10):2256–8. 链接1

[30] Gow SP, Waldner CL, Harel J, Boerlin P. Associations between antimicrobial resistance genes in fecal generic Escherichia coli isolates from cow-calf herds in western Canada. Appl Environ Microbiol 2008;74(12):3658–66. 链接1

[31] Rosengren LB, Waldner CL, Reid-Smith RJ. Associations between antimicrobial resistance phenotypes, antimicrobial resistance genes, and virulence genes of fecal Escherichia coli isolates from healthy grow-finish pigs. Appl Environ Microbiol 2009;75(5):1373–80. 链接1

[32] Nedbalcová K, Kucˇerová Z. Antimicrobial susceptibility of Pasteurella multocida and Haemophilus parasuis isolates associated with porcine pneumonia. Acta Vet Brno 2013;82(1):3–7. 链接1

[33] Du X-D, Wu C-M, Liu H-B, Li X-S, Beier RC, Xiao F, et al. Plasmid-mediated ArmA and RmtB 16S rRNA methylases in Escherichia coli isolated from chickens. J Antimicrob Agents Chemother 2009;64(6):1328–30. 链接1

[34] Ohnuki T, Imanaka T, Aiba S. Self-cloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance. J Bacteriol 1985;164(1):85–94. 链接1

[35] Sundin GW, Bender CL. Dissemination of the strA–strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol Ecol 1996;5(1):133–43. 链接1

[36] Hollingshead S, Vapnek D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 1985;13(1):17–30. 链接1

[37] Clark NC, Olsvik O, Swenson JM, Spiegel CA, Tenover FC. Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis. J Antimicrob Agents Chemother 1999;43(1):157–60. 链接1

[38] San Millan A, Escudero JA, Catalan A, Nieto S, Farelo F, Gibert M, et al. b-lactam resistance in Haemophilus parasuis is mediated by plasmid pB1000 bearing bla (ROB-1). J Antimicrob Agents Chemother 2007;51(6):2260–4. 链接1

[39] Belmahdi M, Bakour S, Al Bayssari C, Touati A, Rolain JM. Molecular characterisation of extended-spectrum b-lactamase- and plasmid AmpCproducing Escherichia coli strains isolated from broilers in Bejaia, Algeria. J Glob Antimicrob Resist 2016;6(1):108–12. 链接1

[40] Tayh G, Ben Sallem R, Ben Yahia H, Gharsa H, Klibi N, Boudabous A, et al. First report of extended-spectrum b-lactamases among clinical isolates of Klebsiella pneumoniae in Gaza Strip, Palestine. Microb Drug Resist 2017;23(2):169–76. 链接1

[41] Majlesi A, Kakhki RK, Mozaffari Nejad AS, Mashouf RY, Roointan A, Abazari M, et al. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran, Saudi. J Biol Sci 2018;25 (3):426–30. 链接1

[42] Akiko T, Naomi K, Yukano K, Kikutarou E, Mitsuhiro O, Eiji Y, et al. Mutational analysis of reduced telithromycin susceptibility of Streptococcus pneumoniae isolated clinically in Japan. FEMS Microbiol Lett 2010;307(1):87–93. 链接1

[43] Vo ATT, Van Duijkeren E, Gaastra W, Fluit AC. Antimicrobial resistance, class 1 integrons, and genomic island 1 in Salmonella isolates from Vietnam. PLoS ONE 2010;5(2):e9440. 链接1

[44] Lancashire JF, Terry TD, Blackall PJ, Jennings MP. Plasmid-encoded Tet B tetracycline resistance in Haemophilus parasuis. J Antimicrob Agents Chemother 2005;49(5):1927–31. 链接1

[45] Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis 2017;17(2):164–73. 链接1

[46] Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis 2017;17(2):174–83. 链接1

[47] Winokur PL, Vonstein DL, Hoffman LJ, Uhlenhopp EK, Doern GV. Evidence for transfer of CMY-2 AmpC b-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. J Antimicrob Agents Chemother 2001;45(10):2716–22. 链接1

[48] Travis RM, Gyles CL, Reid-Smith R, Poppe C, McEwen SA, Friendship R, et al. Chloramphenicol and kanamycin resistance among porcine Escherichia coli in Ontario. J Antimicrob Agents Chemother 2006;58(1):173–7. 链接1

[49] Boerlin P, Travis R, Gyles CL, Reid-Smith R, Janecko N, Lim H, et al. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl Environ Microbiol 2005;71(11):6753–61. 链接1

相关研究