期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第5期 doi: 10.1016/j.eng.2019.10.015

遥感和精准农业技术在作物病害检测与管理中的应用实例

Aerial Application Technology Research Unit, Agricultural Research Service, US Department of Agriculture, College Station, Texas 77845, USA

收稿日期: 2018-09-16 修回日期: 2019-07-17 录用日期: 2019-10-08 发布日期: 2020-03-24

下一篇 上一篇

摘要

长期以来,遥感技术一直被应用于作物病害的检测和地图绘制工作。在作物生长季节获得的机载和卫星图像不仅可以用于某些病害的早期发现和季节内管理,还可用于未来季节中复发性病害的管控。尽管传统的地毯式杀虫剂施用更适于对付能够迅速在田间传播的病害,然而,在作物病害稳定的情况下,精准农业中的变量控制技术(VRT)亦可以有针对性地对受感染地区的作物有效施用杀菌剂。本文简述了已用于作物病害检测和管理的遥感技术和精准农业技术。具体来说,本文详细阐明了利用机载技术、卫星图像和VRT在棉田中检测棉花根腐病(一种破坏性的土壤传播性真菌病)和绘制分布地图的原理,介绍了从图像中提取处方图以施用定点杀菌剂并有效控制作物病害的方法。本文介绍的案例和方法力图为研究人员、推广人员、种植者、作物顾问、农场设备和化学品经销商提供有关遥感检测和有效管理某些作物病害的实用指南。

图片

图1

图2

图3

参考文献

[ 1 ] Taubenhaus JJ, Ezekiel WN, Neblette CB. Airplane photography in the study of cotton root rot. Phytopathology 1929;19(6):1025–9. 链接1

[ 2 ] Colwell RN. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia 1956;26(5):223–86. 链接1

[ 3 ] Myers VI. Remote sensing applications in agriculture. In: Colwell RN, editor. Manual of remote sensing. Bethesda: American Society of Photogrammetry and Remote Sensing; 1983. p. 2111–228. 链接1

[ 4 ] Ryerson RA, Curran PJ, Stephens PR. Applications: agriculture. In: Philipson WR, editor. Manual of photographic interpretation. Bethesda: American Society for Photogrammetry and Remote Sensing; 1997. p. 365–97. 链接1

[ 5 ] Nixon PR, Escobar DE, Bowen RL. A multispectral false-color video imaging system for remote sensing applications. In: Proceedings of the 11th Biennial Workshop on Color Aerial Photography and Videography in the Plant Sciences and Related Fields; 1987 Apr 27–May 1; Weslaco, TX, USA. Bethesda: American Society for Photogrammetry and Remote Sensing; 1987. p. 295–305,340. 链接1

[ 6 ] Cook CG, Escobar DE, Everitt JH, Cavazos I, Robinson AF, Davis MR. Utilizing airborne video imagery in kenaf management and production. Ind Crops Prod 1999;9(3):205–10. 链接1

[ 7 ] Fletcher RS, Skaria M, Escobar DE, Everitt JH. Field spectra and airborne digital imagery for detecting Phytophthora foot rot infections in citrus trees. HortScience 2001;36(1):94–7. 链接1

[ 8 ] Zhang M, Qin Z, Liu X. Remote sensed spectral imagery to detect late blight in field tomatoes. Precis Agric 2005;6(6):489–508. 链接1

[ 9 ] Yang C, Fernandez CJ, Everitt JH. Mapping Phymatotrichum root rot of cotton using airborne three-band digital imagery. Trans ASABE 2005;48(4):1619–26. 链接1

[10] Huang W, Lamb DW, Niu Z, Zhang Y, Liu L, Wang J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis Agric 2007;8(4–5):187–97. 链接1

[11] MacDonald SL, Staid M, Staid M, Cooper ML. Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards. Comput Electron Agric 2016;130:109–17. 链接1

[12] Lu J, Zhou M, Gao Y, Jiang H. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precis Agric 2018;19(3):379–94. 链接1

[13] Du Q, French JV, Skaria M, Yang C, Everitt JH. Citrus pest stress monitoring using airborne hyperspectral imagery. In: Proceedings of the International Geoscience and Remote Sensing Symposium; 2004 Sep 20–24; Anchorage, AK, USA. New York: IEEE; 2004. p. 3981–4. 链接1

[14] Yang C, Fernandez CJ, Everitt JH. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot. Biosyst Eng 2010;107 (2):131–9. 链接1

[15] Kumar A, Lee WS, Ehsani RJ, Albrigo LG, Yang C, Mangan RL. Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques. J Appl Remote Sens 2012;6(1):063542. 链接1

[16] Li H, Lee WS, Wang K, Ehsani R, Yang C. ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging. Precis Agric 2014;15(2):162–83. 链接1

[17] Chen X, Ma J, Qiao H, Cheng D, Xu Y, Zhao Y. Detecting infestation of take-all disease in wheat using Landsat Thematic Mapper imagery. Int J Remote Sens 2007;28(22):5183–9. 链接1

[18] Franke J, Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis Agric 2007;8(3):161–72. 链接1

[19] Santoso H, Gunawan T, Jatmiko RH, Darmosarkoro W, Minasny B. Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precis Agric 2011;12(2):233–48. 链接1

[20] Yuan L, Pu R, Zhang J, Wang J, Yang H. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale. Precis Agric 2016;17 (3):332–48. 链接1

[21] Li X, Lee WS, Li M, Ehsani R, Mishra AR, Yang C, et al. Feasibility study on huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery. Biosyst Eng 2015;132:28–38. 链接1

[22] Garcia-Ruiz F, Sankaran S, Maja JM, Lee WS, Rasmussen J, Ehsani R. Comparison of two aerial imaging platforms for identification of huanglongbing-infected citrus trees. Comput Electron Agric 2013;91:106–15. 链接1

[23] Albetis J, Duthoit S, Guttler F, Jacquin A, Goulard M, Poilvé H, et al. Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens 2017;9(4):308. 链接1

[24] Mattupalli C, Moffet CA, Shah KN, Young CA. Supervised classification of RGB aerial imagery to evaluate the impact of a root rot disease. Remote Sens 2018;10(6):917. 链接1

[25] Yang C, Odvody GN, Thomasson JA, Isakeit T, Nichols RL. Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery. Comput Electron Agric 2016;123:154–62. 链接1

[26] Yang C, Odvody GN, Thomasson JA, Isakeit T, Minzenmayer RR, Drake DR, et al. Site-specific management of cotton root rot using airborne and high resolution satellite imagery and variable rate technology. Trans ASABE 2018;61 (3):849–58. 链接1

[27] Escobar DE, Everitt JH, Noriega JR, Davis MR, Cavazos I. A true digital imaging system for remote sensing applications. In: Proceedings of the 16th Biennial Workshop on Color Photography and Videography in Resource Assessment; 1997 Apr 29–May 1, Weslaco, TX, USA. Bethesda: American Society for Photogrammetry and Remote Sensing; 1997. p. 470–84. 链接1

[28] Yang C. A high-resolution airborne four-camera imaging system for agricultural applications. Comput Electron Agric 2012;88:13–24. 链接1

[29] Yang C, Odvody GN, Fernandez CJ, Landivar JA, Minzenmayer RR, Nichols RL. Evaluating unsupervised and supervised image classification methods for mapping cotton root rot. Precis Agric 2015;16(2):201–15. 链接1

[30] Bramley RGV. Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop Pasture Sci 2009;60(3):197–217. 链接1

[31] Schimmelpfennig D, Ebel R. On the doorstep of the information age: recent adoption of precision agriculture. Washington, DC: USDA Economic Research Service; 2011. 链接1

[32] Zhang Q. Precision agriculture technology for crop farming. Boca Raton: CRC Press; 2016. 链接1

相关研究