期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第12期 doi: 10.1016/j.eng.2019.10.018

清洁煤电大气污染物近零排放技术与工程应用

China Energy Investment Corporation Limited, Beijing 100011, China

收稿日期: 2019-07-16 修回日期: 2019-09-08 录用日期: 2019-10-16 发布日期: 2020-06-15

下一篇 上一篇

摘要

我国能源以煤为主,发电是煤炭消费第一大户。针对煤电大气污染物排放带来的严峻生态环境问题,本文开展了清洁煤电近零排放技术研究与工程实践,评估了近零排放机组长周期运行状态,并探究了重金属汞协同和专门控制技术。结果表明,提出的近零排放技术路线煤质适应性强,应用到全国101台燃煤机组,大气污染物烟尘、SO2、NOx排放浓度低于燃气发电排放限值,长周期运行时排放浓度小时均值达标率超过99%,发电成本增加约0.01 元·(kW·h)–1。污染物总排放量降低约90%,有效改善了环境空气质量。近零排放机组汞排放浓度为0.51~2.89 μg·m–3,投运改性飞灰(MFA)专门脱汞系统,汞排放浓度可低至0.29 μg·m–3, 相同脱除效果下运行成本仅为国际主流活性炭脱汞的10%~15%。通过50 000 m3·h–1燃煤烟气中试平台研究,掌握了多污染物脱除过程中相互影响规律,形成了排放达到不同浓度限值的解决方案;结合示范应用,提出并实现了新的近零排放煤电“1123”生态环保排放限值,即烟尘、SO2、NOx和汞及其化合物排放浓度分别不高于1 mg·m–3、10 mg·m–3、20 mg·m–3和3 μg∙m–3,为“提高污染排放标准”提供了工程技术支撑。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Cen KF, Ni MJ, Gao X, Luo ZY, Wang ZH, Zheng CH. Progress and prospects on clean coal technology for power generation. Chin J Eng Sci 2015;17(9):49–55. Chinese. 链接1

[ 2 ] National Bureau of Statistics. [China energy statistical yearbook 2018]. Beijing: China Statistics Press; 2019. Chinese.

[ 3 ] [Basic statistics of China electric power 2018] [Internet]. Beijing: China Electricity Council; 2019 Jan 19 [cited 2019 Jun 18]. Available from: http:// www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. Chinese. 链接1

[ 4 ] National Standard of the People’s Republic of China. GB 13223–2011: Emission standard of air pollutants for thermal power plants. Chinese standard. Beijing: Ministry of Environmental Protection of the PRC; 2011. Chinese.

[ 5 ] Wang SM, Song C, Chen YB. Technology research and engineering applications of near-zero air pollutant emission coal-fired power plants. Res Envion Sci 2015;28(4):487–94. Chinese.

[ 6 ] [Notice on the issuance of the action plan for upgrading and retrofitting of coal-fired power plants for energy conservation and emission reduction (2014–2020)] [Internet]. Beijing: National Development and Reform Commission; 2014 Sep 12 [cited 2019 Jun 18]. Available from: http:// www.gov.cn/gongbao/content/2015/content_2818468.htm. Chinese. 链接1

[ 7 ] Wang G, Ma Z, Deng J, Li Z, Duan L, Zhang Q, et al. Characteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in China. Sci Total Environ 2019;662:455–61. 链接1

[ 8 ] An LS, Wang JP, Li JG, Yang HF, Liu WP, Liu HX, et al. Development and application overview of electrostatic precipitation technology for coal-fired power plant in China. Electr Power 2018;51(4):115–23. Chinese

[ 9 ] Wang SM, Zhang Y, Liu JZ. Integrated application of fine particulate matter control technologies and their ‘‘near-zero emission” characteristics in coalfired power plants. Res Envion Sci 2016;29(9):1256–63. Chinese

[10] Zhong XP, Li FQ, Wu QR. Development status of high temperature dust removal technology in electric power industry. Energy Environ 2018;150 (5):65–8. Chinese

[11] Zhang SJ, Zheng HA, Chen JS, Fan YJ, Li XQ. Status analysis and improvement measures of volatile dust removal technology in coal pyrolysis process. Clean Coal Technol 2014;20(3):79–82. Chinese.

[12] Fang MX, Liu JJ, Cen JM, Chen QL, Xia ZX. Research progress and application prospect of high temperature electrostatic precipitation technology. High Volt Eng 2019;45(4):1108–17. Chinese.

[13] Wang SM. Research on coal-fired power plants near-zero emission technologies and applications. [dissertation]. Beijing: North China Electric Power University; 2017. Chinese.

[14] Shi WZ, Yang MM, Zhang XH, Li SQ, Yao Q. Ultra-low emission technical route of coal-fired power plants and the cooperative removal. P CSEE 2016;36 (16):4308–18. Chinese.

[15] El Sheikh K, Khan MJH, Hamid MD, Shrestha S, Ali BS, Ryabov GA, et al. Advances in reduction of NOx and N2O emission formation in an oxy-fired fluidized bed boiler. Chin J Chem Eng 2019;27(2):426–43. 链接1

[16] Ke XW, Cai RX, Yang HR, Zhang M, Zhang H, Wu YX, et al. Formation and ultralow emission of NOx for circulating fluidized bed combustion. P CSEE 2018;38 (2):390–6. Chinese.

[17] Hao JM, Ma GD, Wang SX. Air pollution control engineering. 3rd ed. Beijing: Higer Education Press; 2010. Chinese.

[18] Chang SY, Zhuo JK, Meng S, Qin SY, Yao Q. Clean coal technologies in China: current status and future perspectives. Engineering 2016;2 (4):447–59. 链接1

[19] Cen KF. Research progress and outlook for efficient, clean and low-carbon coal utilization. Sci Technol Rev 2018;36(10):66–74. Chinese.

[20] Ozaki M, Uddin MA, Sasaoka E, Wu S. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas. Fuel 2008;87(17– 18):3610–5. 链接1

[21] Srivastava RK, Hutson N, Martin B, Princiotta F, Staudt J. Control of mercury emissions from coal-fired electric utility boilers. Environ Sci Technol 2006;40 (5):1385–93. 链接1

[22] Zhao SL, Duan YF, Yao T, Liu M, Lu JH, Tan HZ, et al. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant. Fuel 2017;199:653–61. 链接1

[23] Fan XP, Li CT, Zeng GM, Zhang X, Tao SS, Lu P, et al. Hg0 removal from simulated flue gas over CeO2/HZSM-5. Energy Fuels 2012;26(4):2082–9. 链接1

[24] Li H, Wu CY, Li Y, Zhang J. CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 2011;45(17):7394–400. 链接1

[25] Diamantopoulou I, Skodras G, Sakellaropoulos GP. Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Process Technol 2010;91(2):158–63. 链接1

[26] Khunphonoi R, Khamdahsag P, Chiarakorn S, Grisdanurak N, Paerungruang A, Predapitakkun S. Enhancement of elemental mercury adsorption by silver supported material. J Environ Sci 2015;32(6):207–16. 链接1

[27] Wang SM, Zhang YS, Gu YZ, Wang JW, Liu Z, Zhang Y, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China. Fuel 2016;181(1):1230–7. 链接1

[28] Gu YZ, Zhang YS, Lin LR, Xu H, Orndorff W, Pan WP. Evaluation of elemental mercury adsorption by fly ash modified with ammonium bromide. J Therm Anal Calorim 2015;119(3):1663–72. 链接1

[29] Wang P, Wu J, He P, Chen JH, Liu QY, Feng C, et al. Experimental study on the characteristics of modified Ca-based sorbents and its mercury adsorption capability in the flue gas. Adv Mat Res 2012;424–425:971–6. 链接1

[30] Yang S, Yan N, Guo Y, Wu D, He H, Qu Z, et al. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3xMnx)1dO4. Environ Sci Technol 2011;45(4):1540–6. 链接1

[31] Du W, Yin LB, Zhuo YQ, Xu QS, Zhang L, Chen CH. Experimental study on mercury capture using non-carbon sorbents in 100 MW coal-fired power plant. CIESC J 2014;65(11):4413–19. Chinese

[32] Glesmann S, Mimna R. The state of U.S. mercury control in response to MATS [Internet]. Power; 2015 Apr 1 [cited 2019 Jun 18]. Available from: http://www. powermag.com/the-state-of-u-s-mercury-control-in-response-to-mats/. 链接1

[33] Jones AP, Hoffmann JW, Smith DN, Feeley TJ 3rd, Murphy JT. DOE/NETL’s phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection. Environ Sci Technol 2007;41 (4):1365–71. 链接1

[34] DB 13/2081–2014: Industrial fuel coal and civil fuel coal. Local standard of Hebei Province. Shijiazhuang: Quality and Technology Supervision Bureau of Hebei Province; 2014. Chinese.

[35] [Notice on the issuance of air pollution prevention and control implementation plan in Zhejiang Province 2017] [Internet]. Hangzhou: Department of Ecology and Environment of Zhejiang Province; 2017 May 19 [cited 2019 Jun 18]. Available from: http://www.zj.gov.cn/art/2017/5/22/art_ 12895_292947.html. Chinese. 链接1

[36] [Notice on the issuance of air pollution prevention and control action plan in Guangdong Province (2014–2017)] [Internet]. Guangdong: Department of Ecology and Environment of Guangzhou Province; 2014 Feb 7 [cited 2019 Jun 18]. Available from: http://www.gd.gov.cn/gkmlpt/content/0/142/post_ 142687.html#7. Chinese. 链接1

[37] Wang SX, Zhang L, Wu QR, Wang FY. Emission characteristics and environmental impacts of atmospheric mercury in China and control approaches. Beijing: Science Press; 2016. Chinese.

[38] Dai SF, Ren DY, Chou CL, Finkelman RB, Seredin VV, Zhou YP. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol 2012;94 (3):3–21. 链接1

[39] Zhao YC, Yang JP, Ma SM, Zhang SB, Liu H, Gong BG, et al. Emission controls of mercury and other trace elements during coal combustion in China a review. Int Geol Rev 2018;60(5–6):638–70. 链接1

[40] Zhang L, Wang SX, Hui LL, Hao JM. Strategic recommendations for the coal combustion sector in China on the implementation of minamata convention on mercury. Environ Prot 2016;44(22):38–42. Chinese.

[41] Yin LB, Zhuo YQ, Xu QS, Zhu ZW, Du W, An ZY. Mercury emission from coalfired power plants in China. P CSEE. 2013;33(29):1–10. Chinese.

[42] Wang SX, Zhang L, Li GH, Wu Y, Hao JM, Pirrone N, et al. Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys 2010;10 (3):1183–92. 链接1

[43] The first near-zero emission coal-fired power in the Jing–Jin–Ji region. Economic Information Daily. 2015 Nov 30; 6. Chinese.

[44] Wang SM, Liu JZ. Investigation of near-zero air pollutant emission characteristics from coal-fired power plants. P CSEE 2016;36(22):6140–7. 链接1

[45] Zhang Y, Bo X, Zhao Y, Nielsen CP. Benefits of current and future policies on emissions of China’s coal-fired power sector indicated by continuous emission monitoring. Environ Pollut 2019;251:415–24. 链接1

[46] UNEP. Global mercury assessment, sources, emissions, releases, and environmental transport. Geneva: UNEP Chemicals Branch; 2013. 链接1

[47] Zhang Y, Yang JP, Yu XH, Sun P, Zhao YC, Zhang JY, et al. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices. Fuel Process Technol 2017;158:272–80. 链接1

[48] Pudasainee D, Kim JH, Yoon YS, Seo YC. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CSESP and wet FGD. Fuel 2012;93(1):312–8. 链接1

[49] Zhang Y, Mei D, Wang T, Wang J, Gu Y, Zhang Z, et al. In-situ capture of mercury in coal-fired power plants using high surface energy fly ash. Environ Sci Technol 2019;53(13):7913–20. 链接1

[50] Williams J. America’s best coal plants [Internet]. Power Engineering; 2014 Jul 17 [cited 2019 Jun 18]. Available from: http://www.power-eng.com/articles/ print/volume-118/issue-7/features/america-s-best-coal-plants.html. 链接1

[51] Tian HZ, Lu L, Hao JM, Gao JJ, Cheng K, Liu KY, et al. A review of key hazardous trace elements in Chinese coals: abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy Fuels 2013;27 (2):601–14. 链接1

[52] Wang SM, Yu XH, Gu YZ, Yuan J, Zhang Y, Chen YB, et al. Discussion of emission limits of air pollutants for near-zero emission coal-fired power plants. Res Environ Sci 2018;31(6):975–84. Chinese.

[53] Wang SM, Liu JZ. Economic and environmental comparison of clean coal-fired power and gas turbine power. China Coal 2016;42(12):5–13. 链接1

[54] [Environmental protection tax law of the PRC] [Internet]. Beijing: The National People’s Congress of the PRC; 2016 Dec 25 [cited 2019 Jun 18]. Available from: http://www.npc.gov.cn/npc/c12435/201612/c305c6c912054177bbc3143628 983e87.shtml. Chinese. 链接1

[55] Liu X, Liu ZL, Jiao WD, Li X, Lin JT, Ku A. Impact of ‘‘ultra low emission” technology of coal-fired power on PM 2.5 pollution in the Jing–Jin–Ji region. Front Energy 2017:1–5. 链接1

[56] Xu HH, Mo H, Wu JY, Zhu J, Huang R. Environmental benefits analysis under thermal power plant in Jing–Jin–Ji region in China under different pollution control scenarios. Environ Eng 2017;35(10):166–70. Chinese.

[57] [Notice on the issuance of air pollution prevention and control action plan] [Internet]. Beijing: The Central People’s Government of the PRC; 2013 Sep 10 [cited 2019 Jun 18]. Available from: http://www.gov.cn/zwgk/2013-09/ 12/content_2486773.htm. Chinese. 链接1

[58] [Report on the state of the ecology and environment in China 2018]. Beijing: Ministry of Ecology and Environment of the PRC; 2019 May 29. Chinese.

[59] World Health Organization. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide—global update 2005. Geneva: WHO Press; 2006.

相关研究