期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2019.11.006

永磁材料稀土减量化的计算设计

a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria

b Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden

c International Research Centre in Critical Raw Materials for Advanced Industrial Technologies, University of Burgos, Burgos 09001, Spain

d IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba 70833, Czech Republic

收稿日期: 2018-06-29 修回日期: 2018-12-20 录用日期: 2019-03-11 发布日期: 2019-11-21

下一篇 上一篇

摘要

多尺度模拟是研究新型永磁材料的关键工具。从第一性原理出发,我们利用一系列模拟方法计算出由新型磁性材料构成的永磁体的可能的最大矫顽场和最大磁能积。利用自适应遗传算法,我们发现了有利于形成永磁体的多种富铁(Fe)磁性相。我们利用从头计算模拟得到的材料本征特性作为微磁学模拟的输入参数,对具有真实结构的永磁体的磁滞特性进行了微磁模拟。我们利用机器学习技术对永磁体的微结构进行了优化,从而预测出该磁性相的矫顽力和最大磁能积的理论上限。我们计算了由几种候选硬磁相构造的永磁体的结构-性能关系,并用[矫顽力(T),最大磁能积(kJ·m–3) ]表示,具体结果如下:铁-锡-锑(Fe3Sn0.75Sb0.25)永磁体为(0.49, 290); L10型有序相的铁-镍(L10 FeNi)永磁体为(1, 400);钴-铁-钽(CoFe6Ta)永磁体为(0.87, 425);锰-铝(MnAl)永磁体为(0.53, 80)。

关键词

稀土 ; 永磁体 ; 微磁学

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Constantinides S. Permanent magnets in a changing world market. Magn Mag 2016;Spring:6–9. 链接1

[ 2 ] Nakamura H. The current and future status of rare earth permanent magnets. Scr Mater 2018;154:273–6. 链接1

[ 3 ] Coey JMD. Permanent magnets: plugging the gap. Scr Mater 2012;67 (6):524–9. 链接1

[ 4 ] Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T, Exl L, et al. On the limits of coercivity in permanent magnets. Appl Phys Lett 2017;111 (7):072404. 链接1

[ 5 ] Nieves P, Arapan S, Hadjipanayis GC, Niarchos D, Barandiaran JM, Cuesta-López S. Applying high-throughput computational techniques for discovering nextgeneration of permanent magnets. Phys Status Solidi C 2016;13(10– 12):942–50. 链接1

[ 6 ] Nieves P, Arapan S, Cuesta-López S. Exploring the crystal structure space of CoFe2P by using adaptive genetic algorithm methods. IEEE Trans Magn 2017;53(11):1–5. 链接1

[ 7 ] Arapan S, Nieves P, Cuesta-López S. A high-throughput exploration of magnetic materials by using structure predicting methods. J Appl Phys 2018;123 (8):083904. 链接1

[ 8 ] Wills JM, Alouani M, Andersson P, Delin A, Eriksson O, Grechnyev O. Fullpotential electronic structure method: energy and force calculations with density functional and dynamical mean field theory. Berlin: Springer-Verlag; 2010. 链接1

[ 9 ] Fischbacher J, Kovacs A, Gusenbauer M, Oezelt H, Exl L, Bance S, et al. Micromagnetics of rare-earth efficient permanent magnets. J Phys Appl Phys 2018;51(19):193002. 链接1

[10] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59(3):1758–75. 链接1

[11] Quey R, Renversade L. Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data. Comput Methods Appl Mech Eng 2018;330:308–33. 链接1

[12] Salome-platform [Internet]. Guyancourt: OPEN CASCADE SAS; c2005–2019 [cited 2018 Feb 1]. Available from: http://www.salomeplatform.org/. 链接1

[13] Exl L, Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T. Preconditioned nonlinear conjugate gradient method for micromagnetic energy minimization. Comput Phys Commun 2019;235:179–86. 链接1

[14] Adams BM, Bohnhoff WJ, Dalbey KR, Eddy JP, Eldred MS, Gay DM, et al. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual. Livermore: Sandia National Laboratories; 2009. Report No.: SAND2010-2183.

[15] Gaunt P. Magnetic viscosity in ferromagnets: I. phenomenological theory. Philos Mag 1976;34(5):775–80. 链接1

[16] Carilli MF, Delaney KT, Fredrickson GH. Truncation-based energy weighting string method for efficiently resolving small energy barriers. J Chem Phys 2015;143(5):054105. 链接1

[17] Nieves P, Arapan S, Maudes-Raedo J, Marticorena-Sánchez R, Brío ND, Kovacs A, et al. Database of novel magnetic materials for high-performance permanent magnet development. Comput Mater Sci 2019;168:188–202. 链接1

[18] Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#115_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http://crono.ubu.es/novamag/show_item_features?mafid=1574. 链接1

[19] Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#160_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1545. 链接1

[20] Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#38_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1534. 链接1

[21] Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#63_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1579. 链接1

[22] Material features: NOVAMAG_theory_ICCRAM_Co4Fe24Ta4_#8_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1551. 链接1

[23] Lizárraga R, Pan F, Bergqvist L, Holmström E, Gercsi Z, Vitos L. First principles theory of the hcp–fcc phase transition in cobalt. Sci Rep 2017;7(1):3778. 链接1

[24] Sales BC, Saparov B, McGuire MA, Singh DJ, Parker DS. Ferromagnetism of Fe3Sn and alloys. Sci Rep 2014;4(1):7024. 链接1

[25] Vekilova OY, Fayyazi B, Skokov KP, Gutfleisch O, Echevarria-Bonet C, Barandiarán JM, et al. Tuning the magnetocrystalline anisotropy of Fe3Sn by alloying. Phys Rev B 2019;99(2):024421. 链接1

[26] Kovacs A, Fischbacher J, Oezelt H, Schrefl T, Kaidatzis A, Salikhov R, et al. Micromagnetic simulations for coercivity improvement through nanostructuring of rare-earth free L10-FeNi magnets. IEEE Trans Magn 2017;53 (11):7002205. 链接1

[27] Niarchos D, Gjoka M, Psycharis V, Devlin E. Towards realization of bulk L10-FeNi. In: Proceedings of 2017 IEEE International Magnetics Conference (INTERMAG); 2017 Apr 24–28; Dublin, Ireland; 2017.

[28] Nieves P, Arapan S, Schrefl T, Cuesta-Lopez S. Atomistic spin dynamics simulations of the MnAl s-phase and its antiphase boundary. Phys Rev B 2017;96(22):224411. 链接1

[29] Gjoka M, Psycharis V, Devlin E, Niarchos D, Hadjipanayis G. Effect of Zr substitution on the structural and magnetic properties of the series Nd1xZrxFe10Si2 with the ThMn12 type structure. J Alloys Compd 2016;687:240–5. 链接1

[30] Gabay AM, Cabassi R, Fabbrici S, Albertini F, Hadjipanayis GC. Structure and permanent magnet properties of Zr1xRxFe10Si2 alloys with R = Y, La, Ce, Pr and Sm. J Alloys Compd 2016;683:271–5. 链接1

[31] Kronmüller H, Fähnle M. Micromagnetism and the microstructure of ferromagnetic solids. Cambridge: Cambridge University Press; 2003. 链接1

[32] Zickler GA, Fidler J, Bernardi J, Schrefl T, Asali A. A combined TEM/STEM and micromagnetic study of the anisotropic nature of grain boundaries and coercivity in Nd–Fe–B magnets. Adv Mater Sci Eng 2017;2017:6412042. 链接1

[33] Richter HJ. Model calculations of the angular dependence of the switching field of imperfect ferromagnetic particles with special reference to barium ferrite. J Appl Phys 1989;65(9):3597–601. 链接1

[34] Wang D, Sellmyer DJ, Panagiotopoulos I, Niarchos D. Magnetic properties of Nd(Fe,Ti)12 and Nd(Fe,Ti)12Nx films of perpendicular texture. J Appl Phys 1994;75(10):6232–4. 链接1

[35] Bance S, Bittner F, Woodcock TG, Schultz L, Schrefl T. Role of twin and antiphase defects in MnAl permanent magnets. Acta Mater 2017;131:48–56. 链接1

相关研究