期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2019.11.007

利用Nd-Fe-B 油泥回收制备高性能烧结磁体的有效方法

a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China

b State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China

c Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China

d Earth-Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China

收稿日期: 2018-08-13 修回日期: 2019-01-05 录用日期: 2019-04-15 发布日期: 2019-11-21

下一篇 上一篇

摘要

全球稀土储量的下降以及当前湿法回收技术对环境造成的影响日益受到人们的关注,开发一种有效回收钕铁硼(Nd-Fe-B)烧结磁体生产过程中剩余油泥的技术已迫在眉睫。本研究选择了Nd-Fe-B烧结磁体加工过程中产生的无心磨削油泥作为原材料。我们对油泥进行了还原扩散(RD)处理,以合成可供回收的钕磁体(Nd2Fe14B)粉末。在此过程中,包括钕(Nd)、镨(Pr)、钆(Gd)、镝(Dy)、钬(Ho)和钴(Co)在内的大多数有价值的元素被同时回收。氯化钙粉末(CaCl2)具有较低的熔点,我们将其引入RD工艺中以降低回收成本和提高回收效率。通过调节反应温度和油泥中的钙含量,我们系统地研究了Nd-Fe-B油泥回收过程中的反应机理。结果表明,当油泥中的钙含量为40 wt%且反应温度为1050 ℃时,获得的Nd2Fe14B单相颗粒的结晶度良好。我们在回收的Nd2Fe14B颗粒中掺杂了含量为37.7 wt%的Nd4Fe14B粉末,用以制备Nd-Fe-B烧结磁体,且所获磁体的剩磁为12.1 kG(1G =1×10–4 T)、矫顽力为14.6 kOe(1 Oe = 79.5775 A·m–1)、磁能积为34.5 MGOe。该回收路径在回收效率和成本上具有很大的优势。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 2011;23(7):821–42. 链接1

[ 2 ] Jones N. Materials science: the pull of stronger magnets. Nature 2011;472 (7341):22–3. 链接1

[ 3 ] Coey JMD. Hard magnetic materials: aperspective. IEEE Trans Magn 2011;47 (12):4671–81. 链接1

[ 4 ] Nakamura H. The current and future status of rare earth permanent magnets. Scr Mater 2017;154:273–6. 链接1

[ 5 ] Dong SZ, Li W, Chen HS, Han R. The status of Chinese permanent magnet industry and R&D activities. AIP Adv 2017;7(5):056237. 链接1

[ 6 ] Itoh M, Miura K, Machida K. Novel rare earth recovery process on Nd–Fe–B magnet scrap by selective chlorination using NH4Cl. J Alloys Compd 2009;477 (1–2):484–7. 链接1

[ 7 ] Li XT, Yue M, Liu WQ, Li XL, Yi XF, Huang XL, et al. Large batch recycling of waste Nd–Fe–B magnets to manufacture sintered magnets with improved magnetic properties. J Alloys Compd 2015;649:656–60. 链接1

[ 8 ] Zakotnik M, Tudor CO. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘‘designer properties” that exceed those of starting materials. Waste Manag 2015;44:48–54. 链接1

[ 9 ] Takeda O, Okabe TH. Current status on resource and recycling technology for rare earths. Metall Mater Trans E 2014;1(2):160–73. 链接1

[10] Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, et al. Recycling of rare earths: a critical review. J Clean Prod 2013;51:1–22. 链接1

[11] Belova VV. Development of solvent extraction methods for recovering rare earth metals. Theor Found Chem Eng 2017;51(4):599–609. 链接1

[12] Jha MK, Kumari A, Panda R, Rajesh Kumar J, Yoo K, Lee JY. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 2016;161:77–101. 链接1

[13] Kim D, Powell LE, Delmau LH, Peterson ES, Herchenroeder J, Bhave RR. Selective extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ Sci Technol 2015;49(16):9452–9. 链接1

[14] Vahidi E, Zhao F. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. J Environ Manage 2017;203(Pt 1):255–63. 链接1

[15] Bian YY, Guo SQ, Jiang L, Tang K, Ding WZ. Extraction of rare earth elements from permanent magnet scraps by FeO-B2O3 flux treatment. J Sustain Metall 2015;1(2):151–60. 链接1

[16] Hua ZS, Wang J, Wang L, Zhao Z, Li XL, Xiao YP, et al. Selective extraction of rare earth elements from NdFeB scrap by molten chlorides. ACS Sustain Chem Eng 2014;2(11):2536–43. 链接1

[17] Sun GF, Chen JF, Dahl W, Klaar HJ, Burchard WG. The synthesis of Nd–Fe–Co–B by reduction–diffusion and its magnetic properties. J Appl Phys 1988;64 (10):5519–21. 链接1

[18] Asabe K, Saguchi A, Takahashi W, Suzuki RO, Ono K. Recycling of rare earth magnet scraps: part I carbon removal by high temperature oxidation. Mater Trans 2001;42(12):2487–91. 链接1

[19] Suzuki RO, Saguchi A, Takahashi W, Yagura T, Ono K. Recycling of rare earth magnet scraps: part II oxygen removal by calcium. Mater Trans 2001;42 (12):2492–8. 链接1

[20] Saguchi A, Asabe K, Takahashi W, Suzuki RO, Ono K. Recycling of rare earth magnet scraps part III carbon removal from Nd magnet grinding sludge under vacuum heating. Mater Trans 2002;43(2):256–60. 链接1

[21] Saguchi A, Asabe K, Fukuda T, Takahashi W, Suzuki RO. Recycling of rare earth magnet scraps: carbon and oxygen removal from Nd magnet scraps. J Alloys Compd 2006;408–412:1377–81. 链接1

[22] Yin XW, Liu M, Wan BC, Zhang Y, Liu WQ, Wu YF, et al. Recycled Nd–Fe–B sintered magnets prepared from sludges by calcium reduction–diffusion process. J Rare Earths 2018;36(12):1284–91. 链接1

[23] Yue M, Yin XW, Li XT, Li M, Li XL, Liu WQ, et al. Recycling of Nd–Fe–B sintered magnets sludge via the reduction–diffusion route to produce sintered magnets with strong energy density. ACS Sustain Chem Eng 2018;6(5):6547–53. 链接1

[24] Zhong Y, Chaudhary V, Tan X, Parmar H, Ramanujan RV. Mechanochemical synthesis of high coercivity Nd2(Fe,Co)14B magnetic particles. Nanoscale 2017;9(47):18651–60. 链接1

[25] Lin JH, Liu SF, Cheng QM, Qian XL, Yang LQ, Su MZ. Preparation of Nd–Fe–B based magnetic materials by soft chemistry and reduction–diffusion process. J Alloys Compd 1997;249(1–2):237–41. 链接1

[26] Km CW, Km YH, Cha HG, Kang YS. Study on synthesis and magnetic properties of Nd–Fe–B alloy via reduction–diffusion process. Phys Scr 2007; T129:321–5. 链接1

[27] Chen CJ, Liu TY, Hung YC, Lin CH, Chen SH, Wu CD. Effect of CaCl2 and NdCl3 on the manufacturing of Nd–Fe–B by the reduction–diffusion process. J Appl Phys 1991;69(8):5501–3. 链接1

[28] Chen CQ, Kim D, Choi C. Influence of Ca amount on the synthesis of Nd2Fe14B particles in reduction–diffusion process. J Magn Magn Mater 2014;355:180–3. 链接1

[29] Claude E, Ram S, Gimenez I, Chaudoüet P, Boursier D, Joubert JC. Evidence of a quantitative relationship between the degree of hydrogen intercalation and the coercivity of the two permanent magnet alloys Nd2Fel4B and Nd2Fe11Co3B. IEEE Trans Magn 1993;29(6):2767–9. 链接1

[30] Ram S, Joubert JC. Production of substantially stable Nd–Fe–B hydride (magnetic) powders using chemical dissociation of water. Appl Phys Lett 1992;61(5):613–5. 链接1

[31] Mottram RS, Kianvash A, Harris IR. The use of metal hydrides in powder blending for the production of NdFeB-type magnets. J Alloys Compd 1999;283 (1–2):282–8. 链接1

[32] Kianvash A, Mottram RS, Harris IR. Densification of a Nd13Fe78NbCoB7-type sintered magnet by (Nd,Dy)-hydride additions using a powder blending technique. J Alloys Compd 1999;287(1–2):206–14. 链接1

[33] Li C, Liu WQ, Yue M, Liu YQ, Zhang DT, Zuo TY. Waste Nd–Fe–B sintered magnet recycling by doping with rare earth rich alloys. IEEE Trans Magn 2014;50(12):1–3. 链接1

相关研究