期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第6期 doi: 10.1016/j.eng.2019.12.004

Grade 91钢抗蠕变性能的计算热力学研究

a Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA

b Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA

收稿日期: 2018-08-09 修回日期: 2019-04-13 录用日期: 2019-06-28 发布日期: 2019-12-11

下一篇 上一篇

摘要

本研究旨在了解在焊接Grade 91(Gr.91)钢时,热影响区(HAZ)内不同的临界温度与第二相的稳定性之间的关系。IV型开裂出现在Gr.91钢的焊接热影响区。先前的研究表明,Gr.91钢的开裂失效与其抗蠕变性能有关,而Gr.91钢中第二相的稳定性对其抗蠕变性能有着举足轻重的影响。本研究运用计算热力学方法预测了Gr.91钢中的第二相,即M23C6相、MX相和Z相的稳定性。平衡凝固和Scheil凝固模拟方法分别被用于研究Gr.91钢在焊接过程中的相稳定性。本文讨论了四个不同临界温度,即Ac1(加热时奥氏体开始生成的温度)、Ac3(加热时奥氏体转变的终了温度)、M23C6相及Z相的阈值温度对热影响区的厚度和相稳定性的影响。本研究的模拟结果解释了Gr.91钢抗蠕变性能的影响机理,并为如何通过优化钢的成分、焊接和热处理工艺参数提高钢的高温抗蠕变性能提供了一种可行的解决方案。同时,本工作的模拟结果为新型合金的研发,即通过提高钢的抗蠕变性能来防止IV型开裂提供了指导。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Abe F, Okada H, Wanikawa S, Tabuchi M, Itagaki T, Kimura K, et al. Guiding principles for development of advanced ferritic steels for 650 C USC boilers. In: Proceedings of the Seventh Liege Conference on Materials for Advanced Power Engineering; 2002 Sep 30–Oct 2; Liege, Belgium; 2002. p. 1397–406. 链接1

[ 2 ] Bhadeshia HKDH. Design of ferritic creep-resistant steels. ISIJ Int 2001;41 (6):626–40. 链接1

[ 3 ] Abson DJ, Rothwell JS. Review of type IV cracking of weldments in 9–12%Cr creep strength enhanced ferritic steels. Int Mater Rev 2013;58(8):437–73. 链接1

[ 4 ] Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr–W steels. Mater Sci Eng A 2004;387–389:565–9. 链接1

[ 5 ] Sawada K, Kushima H, Kimura K, Tabuchi M. Z-phase formation and its effect on long-term creep strength in 9–12%Cr creep resistant steels. Trans Indian Inst Met 2010;63(2–3):117–22. 链接1

[ 6 ] Hald J. Materials for advanced power engineering. In: Proceedings of the Eighth Liege Conference on Materials for Advanced Power Engineering; 2006 Sep 18– 20; Liege, Belgium; 2006. 链接1

[ 7 ] Kimura K, Sawada K, Kushima H, Toda Y. Influence of chemical composition and heat treatment on long-term creep strength of Grade 91 steel. Procedia Eng 2013;55:2–9. 链接1

[ 8 ] Abd El-Azim ME, Nasreldin AM, Zies G, Klenk A. Microstructural instability of a welded joint in P91 steel during creep at 600 C. Mater Sci Technol 2005;21(7):779–90. 链接1

[ 9 ] Abe F, Taneike M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int J Press Vessels Piping 2007;84(1–2): 3–12. 链接1

[10] Gooch DJ, Kimmins ST. A study of type IV cracking in 1/2% CrMoV/2 1/4% CrMo weldments. In: Proceedings of the Third International Conference on Creep and Fracture of Engineering Materials and Structures; 1987 Apr 5–10; Swansea, UK; 1987. p. 698–703. 链接1

[11] Kimmins ST, Coleman MC, Smith DJ. An overview of creep failure associated with heat affected zones of ferritic weldments. In: Proceedings of the Fifth International Conference on Creep and Fracture of Engineering Materials and Structures; 1993 Mar 28–Apr 2; Swansea, UK; 1993. p. 681–94. 链接1

[12] Kimmins ST, Smith DJ. On the relaxation of interface stresses during creep of ferritic steel weldments. J Strain Anal Eng Des 1998;33(3):195–206. 链接1

[13] Ellis FV, Viswanathan R. Review of type IV cracking in piping welds. In: Proceedings of the International Conference on Integrity of High Temperature Welds; 1998 Nov 3–4; London, UK; 1998.

[14] Nishimura N, Iwamoto K, Yamauchi M, Masuyama F, Imamoto T, Yokoyama T. Development of life assessment system for high energy piping in fossil power boilers. In: Proceedings of the 4th International Conference on Reliability, Maintainability and Safety; 1999 May 18; Shanghai, China; 1999. p. 347–52. 链接1

[15] Francis JA, Mazur W, Bhadeshia HKDH. Review type IV cracking in ferritic power plant steels. Mater Sci Technol 2006;22(12):1387–95. 链接1

[16] Mannan SL, Laha K. Creep behavior of Cr–Mo steel weldments. Trans Indian Inst Met 1996;49(4):303–20. 链接1

[17] Yu X, Babu SS, Terasaki H, Komizo Y, Yamamoto Y, Santella ML. Correlation of precipitate stability to increased creep resistance of Cr–Mo steel welds. Acta Mater 2013;61(6):2194–206. 链接1

[18] Chen RP, Ghassemi Armaki H, Maruyama K, Igarashi M. Long-term microstructural degradation and creep strength in Gr.91 steel. Mater Sci Eng A 2011;528(13–14):4390–4. 链接1

[19] Brinkman CR, Sikka VK, Horak JA, Santella ML. Long-term creep rupture behavior of modified 9Cr–1Mo steel base and weldment behavior. Oak Ridge TN: Oak Ridge National Laboratory; 1987. Report No.: ORNL/TM-10504. 链接1

[20] Hald J. Microstructure and long-term creep properties of 9–12% Cr steels. Int J Press Vessels Piping 2008;85(1–2):30–7. 链接1

[21] Danielsen HK, Hald J. Behaviour of Z phase in 9–12% Cr steels. Energy Mater 2006;1(1):49–57. 链接1

[22] Suzuki K, Kumai S, Kushima H, Kimura K, Abe F. Precipitation of Z-phase and precipitation sequence during creep deformation of mod. 9Cr–1Mo steel. Tetsu to Hagane 2003;89(6):691–8. 链接1

[23] Danielsen HK. Z-phase in 9–12% Cr steels [dissertation]. Lyngby: Technical University of Denmark; 2007. 链接1

[24] Cerri E, Evangelista E, Spigarelli S, Bianchi P. Evolution of microstructure in a modified 9Cr–1Mo steel during short term creep. Mater Sci Eng A 1998;245 (2):285–92. 链接1

[25] Smith DJ, Walker NS, Kimmins ST. Type IV creep cavity accumulation and failure in steel welds. Int J Press Vessels Piping 2003;80(9):617–27. 链接1

[26] Lee JS, Maruyama K, Nonaka I, Ito T. Mechanism of type IV failure in weldment of a mod 9Cr–1Mo steel. In: Proceedings of the Creep Deformation and Fracture, Design and Life Extension; 2005 Sep 25–28; Pittsburgh, PA, USA; 2005. p. 139–48. 链接1

[27] Francis JA, Mazur W, Bhadeshia HKDH. Estimation of type IV cracking tendency in power plant steels. ISIJ Int 2004;44(11):1966–8. 链接1

[28] Maziasz PJ, Klueh RL, Vitek JM. Helium effects on void formation in 9Cr– 1MoVNb and 12Cr–1MoVW irradiated in HFIR. J Nucl Mater 1986;141– 143:929–37. 链接1

[29] Klueh RL, Kai JJ, Alexander DJ. Microstructure-mechanical properties correlation of irradiated conventional and reduced-activation martensitic steels. J Nucl Mater 1995;225:175–86. 链接1

[30] Little EA, Stoter LP. 11th conference on ‘‘effects of radiation on materials”. Philadelphia: ASTM STP; 1982. 链接1

[31] Gelles DS, Thomas LE. Ferritic alloys for use in nuclear energy technologies. Warrendale: TMS-AIME; 1984. 链接1

[32] Orlova A, Buršik J, Kucharˇová K, Sklenicˇka V. Microstructural stability of creep resistant alloys for high temperature plant applications. London: The Institute of Materials; 1998. 链接1

[33] Laha K, Chandravathi KS, Parameswaran P, Bhanu Sankara Rao K, Mannan SL. Characterization of microstructures across the heat-affected zone of the modified 9Cr–1Mo weld joint to understand its role in promoting type IV cracking. Metall Mater Trans A 2007;38(1):58–68. 链接1

[34] Danielsen HK, Hald J. A thermodynamic model of the Z-phase Cr(V,Nb)N. Calphad 2007;31(4):505–14. 链接1

[35] Abe F. Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. Mater Sci Eng A 2009;510–511:64–9. 链接1

[36] Parker JD, Coleman K, Henry J, Liu W, Zhou G. Guidelines and specifications for high-reliability fossil power plants: best practice guideline for manufacturing and construction of Grade 91 steel components 1023199. California: Electric Power Research Institute; 2011. Report No.: 3002006390.

[37] Foldyna V, Kubon Z, Vodarek V, Purmensky J. How to improve creep rupture strength of advanced chromium steels. In: Proceedings of the Thrid International Conference on Advances in Materials Technology for Fossil Power Plants; 2001 Apr 5–6; Llandysul, UK; 2001.

[38] Klueh RL. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int Mater Rev 2013;50(5):287–310. 链接1

[39] Viswanathan R, Nutting J. Advanced heat resistant steel for power generation. London: Institute of Materials; 1999. 链接1

[40] Zhong Y, Ozturk K, Sofo JO, Liu Z. Contribution of first-principles energetics to the Ca–Mg thermodynamic modeling. J Alloys Compd 2006;420(1–2):98–106. 链接1

[41] Asadikiya M, Rudolf C, Zhang C, Boesl B, Agarwal A, Zhong Y. Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloys Compd 2017;699:1022–9. 链接1

[42] Asadikiya M, Zhong Y. Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals. J Mater Sci 2018;53(3): 1699–709. 链接1

[43] Costa e Silva A. Applications of multicomponent databases to the improvement of steel processing and design. J Phase Equilibria Diffus 2017;38(6):916–27. 链接1

[44] Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, et al. FactSage thermochemical software and databases—recent developments. Calphad 2009;33(2):295–311. 链接1

[45] Andersson JO, Helander T, Höglund L, Shi P, Sundman B. Computational tools for materials science. Calphad 2002;26(2):273–312. 链接1

[46] Kroupa A. Modelling of phase diagrams and thermodynamic properties using Calphad method—development of thermodynamic databases. Comput Mater Sci 2013;66:3–13. 链接1

[47] Perrut M. Thermodynamic modeling by the Calphad method and its applications to innovative materials. Aerospace Lab 2015;9:1–11. 链接1

[48] Smith A, Asadikiya M, Zhong Y. The thermodynamic evaluation and modeling of Grade 91 alloy and its secondary phases through the CALPHAD approach. In: Proceedings of the 2017 Annual Review Meeting for Crosscutting Research MS&T; 2017 Mar 20–23; Pittsburgh, PA, USA; 2017. 链接1

[49] Fedorova I, Kostka A, Tkachev E, Belyakov A, Kaibyshev R. Tempering behavior of a low nitrogen boron-added 9%Cr steel. Mater Sci Eng A 2016;662:443–55. 链接1

[50] Kipelova AY, Belyakov AN, Skorobogatykh VN, Shchenkova IA, Kaibyshev RO. Tempering-induced structural changes in steel 10Kh9K3V1M1FBR and their effect on the mechanical properties. Metal Sci Heat Treat 2010;52(3–4): 100–10. 链接1

[51] Kipelova A, Kaibyshev R, Belyakov A, Molodov D. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions. Mater Sci Eng A 2011;528(3):1280–6. 链接1

[52] Fedoseeva A, Dudova N, Kaibyshev R. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Mater Sci Eng A 2016;654:1–12. 链接1

[53] Dudova N, Plotnikova A, Molodov D, Belyakov A, Kaibyshev R. Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650 C. Mater Sci Eng A 2012;534:632–9. 链接1

[54] Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ. Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Mater 2010;58(2):669–79. 链接1

[55] Laha K, Chandravathi KS, Parameswaran P, Rao KBS. Type IV cracking susceptibility in weld joints of different grades of Cr–Mo ferritic steel. Metall Mater Trans A 2009;40(2):386–97. 链接1

[56] Sawada K, Tabuchi M, Hongo H, Watanabe T, Kimura K. Z-phase formation in welded joints of high chromium ferritic steels after long-term creep. Mater Charact 2008;59(9):1161–7. 链接1

相关研究