期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2019.12.006

通过 B 位Ta置换对 AB O4型EuNbO4的热学和力学性质进行优化

Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

收稿日期: 2019-04-23 修回日期: 2019-08-01 录用日期: 2019-08-01 发布日期: 2019-12-11

下一篇 上一篇

摘要

铁弹性的ABO4型RETaO4陶瓷和RENbO4陶瓷(RE表示稀土)是具有潜在应用价值的热障涂层(TBC)材料,研究人员正在对其进行大量研究。结果显示, RETaO4陶瓷的力学性质优于RENbO4陶瓷的力学性质。在本研究中,我们通过B位钽(Ta)置换对利用固相法(SSR)制备的EuNbO4陶瓷的热学和力学性质进行优化。我们使用X射线衍射(XRD)法和拉曼光谱技术对所制备的晶体结构进行确认,并利用扫描电子显微镜(SEM)对结构表面的微观形貌进行观察。结果表明,通过B位Ta置换可以有效提高EuNbO4陶瓷的杨氏模量和热膨胀系数(TEC),且其最大值分别为169 GPa和1.12×10−5 K−1(1200 ℃); EuNbO4陶瓷的热导率被降低至1.52 W·K–1·m–1(700 ℃),且材料的抗热辐射能力得到了改善。我们建立了声子热扩散系数与温度之间的关系,用以通过消除热辐射效应来确定声子本征热导率。研究结果表明,通过B位Ta置换能够有效优化EuNbO4的热学和力学性质,从而使得此种材料在将来可成为一种高温结构陶瓷材料。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Wang J, Chong XY, Zhou R, Feng J. Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scr Mater 2017;126:24–8. 链接1

[ 2 ] Sarin P, Hughes RW, Lowry DR, Apostolov ZD, Kriven WM. High-temperature properties and ferroelastic phase transition in rare earth niobates (LnNbO4). J Am Ceram Soc 2014;97(10):3307–19. 链接1

[ 3 ] Brixner LH, Whitney JF, Zumsteg FC, Jones GA. Ferroelasticity in the LnNbO4- type rare earth niobates. Mater Res Bull 1977;12(1):17–24. 链接1

[ 4 ] Machida M, Murakami S, Kijima T. Photocatalytic property and electronic structure of lanthanide tantalates, LnTaO4 (Ln = La, Ce, Pr, Nd and Sm). J Phys Chem B 2001;105(16):3289–94. 链接1

[ 5 ] Haugsrud R, Norby T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat Mater 2006;5(3):193–6. 链接1

[ 6 ] Kim DW, Kwon DK, Yoon SH, Hong KS. Microwave dielectric properties of rareearth ortho-niobates with ferroelasticity. J Am Ceram Soc 2006;89(12):3861–4. 链接1

[ 7 ] Jian L, Wayman CM. Compressive behavior and domain-related shape memory effect in LaNbO4 ceramics. Mater Lett 1996;26(1–2):1–7. 链接1

[ 8 ] Feng J, Shian S, Xiao B, Clarke DR. First-principles calculations of the hightemperature phase transformation in yttrium tantalate. Phys Rev B 2014;90 (9):094102. 链接1

[ 9 ] Mercer C, Williams JR, Clarke DR, Evans AG. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t’) yttria-stabilized zirconia. Proc R Soc A 2007;463(2081):1393–408. 链接1

[10] Li GR, Wang LS. Durable TBCs with self-enhanced thermal insulation based on co-design on macro- and microstructure. Appl Surf Sci 2019;483:472–80. 链接1

[11] Ren XR, Pan W. Mechanical properties of high-temperature-degraded yttriastabilized zirconia. Acta Mater 2014;69:397–406. 链接1

[12] Li QL, Song P, Lü KY, Dong Q, Li Q, Tan J, et al. Fracture behaviour of ceramic– metallic glass gradient transition coating. Ceram Int 2019;45(5):5566–76. 链接1

[13] Liu MJ, Zhang M, Zhang XF, Li GR, Zhang Q, Li CX, et al. Transport and deposition behaviors of vapor coating materials in plasma spray-physical vapor deposition. Appl Surf Sci 2019;486:80–92. 链接1

[14] Liu YC, Liu B, Xiang HM, Zhou YC, Nian HQ, Chen HF, et al. Theoretical investigation of anisotropic mechanical and thermal properties of ABO3 (A = Sr, Ba; B = Ti, Zr, Hf) perovskites. J Am Ceram Soc 2018;101(8):3527–40. 链接1

[15] Liu B, Wang JY, Li FZ, Zhou YC. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater 2010;58(13):4369–77. 链接1

[16] Chen L, Jiang YH, Chong XY, Feng J. Synthesis and thermophysical properties of RETa3O9 (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J Am Ceram Soc 2018;101(13):1266–78. 链接1

[17] Liu MJ, Zhang KJ, Zhang Q, Zhang M, Yang GJ, Li CX, et al. Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition. Appl Surf Sci 2019;471:950–9. 链接1

[18] Song XM, Meng FL, Kong MG, Liu ZW, Huang LP, Zheng XB, et al. Relationship between cracks and microstructures in APS YSZ coatings at elevated temperatures. Mater Character 2017;131:277–84. 链接1

[19] Li GR, Li G, Wang L, Yang G. A novel composite-layered coating enabling selfenhancing thermal barrier performance. Scr Mater 2019;163:142–7. 链接1

[20] Sanditov DS, Belomestnykh VN. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Tech Phys 2011;56 (11):1619–23. 链接1

[21] Schlichting KW, Padture NP, Klemens PG. Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 2001;36(12):3003–10. 链接1

[22] Leitner J, Chuchvalec P, Sedmidubsky D, Strejc A, Abrman P. Estimation of heat capacities of solid mixed oxides. Thermochim Acta 2003;395(1–2): 27–46. 链接1

[23] Kittle C. Introduction to solid state physics. 6th ed. New York: John Wiley & Sons; 1986. 链接1

[24] Feng J, Xiao B, Zhou R, Pan W. Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater 2013;61(19):7364–83. 链接1

[25] Zhao M, Pan W, Wan CL, Qu ZX, Li Z, Yang J. Defect engineering in development of low thermal conductivity materials: a review. J Eur Ceram Soc 2016;37 (1):1–13. 链接1

[26] Zhao M, Ren XR, Pan W. Mechanical and thermal properties of simultaneously substituted pyrochlore compounds (Ca2Nb2O7)x(Gd2Zr2O7)1–x. J Eur Ceram Soc 2015;35(3):1055–61. 链接1

[27] Li QL, Song P, He X, Yu X, Li C, Huang TH, et al. Plastic metallic-barrier layer for crack propagation within plasma-sprayed Cu/ceramic coatings. Surf Coat Tech 2019;360(25):259–68. 链接1

[28] Slack GA. The thermal conductivity of nonmetallic crystals. Solid State Phys 1979;34:1–71. 链接1

[29] Ge ZH, Ji YH, Qiu Y, Chong XY, Feng J, He JQ. Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scr Mater 2018;143:90–3. 链接1

[30] Klemens PG. Thermal resistance due to point defects at high temperatures. Phys Rev 1960;119(2):507–9. 链接1

[31] Ambegaokar V. Thermal resistance due to isotopes at high temperatures. Phys Rev 1959;114(2):488–9. 链接1

[32] Wan CL, Pan W, Xu Q, Qin YX, Wang JD, Qu ZX, et al. Effect of point defects on the thermal transport properties of (LaxGd1–x)2Zr2O7: experiment and theoretical model. Phys Rev B 2006;74:144109. 链接1

[33] Raychaudhuri AK. Origin of the plateau in the low-temperature thermal conductivity of silica. Phys Rev B Condens Matter 1989;39(3):1927–31. 链接1

[34] Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B Condens Matter 1992;46(10):6131–40. 链接1

[35] Clarke DR. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Tech 2003;163–4:67–74. 链接1

[36] Tian ZL, Sun LC, Wang JM, Wang JY. Theoretical prediction and experimental determination of the low lattice thermal conductivity of Lu2SiO5. J Eur Ceram Soc 2015;35(6):1923–32. 链接1

[37] Bruls RJ, Hintzen HT, Metselaar R. A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds: a case study for MgSiN2, AlN and Si3N4 ceramics. J Eur Ceram Soc 2005;25(6):767–79. 链接1

[38] Chen L, Song P, Feng J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scr Mater 2018;152: 117–21. 链接1

[39] Yang J, Wan CL, Zhao M, Shahid M, Pan W. Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications. J Eur Ceram Soc 2016;36(15):3809–14. 链接1

[40] Du AB, Wan CL, Qu ZX, Pan W. Thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd). J Am Ceram Soc 2009;92(11):2687–92. 链接1

相关研究