期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2019.12.008

快速热处理制备纳米耦合Nd-Fe-B磁体的结构与磁性能研究

a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China

收稿日期: 2018-08-22 修回日期: 2018-11-11 录用日期: 2019-03-11 发布日期: 2020-02-27

下一篇 上一篇

摘要

纳米永磁材料,因其磁性能卓越,力学性能稳定,热稳定性高,耐腐蚀性强,近年来成为永磁材料领域炽手可热的研究热点。纳米双相耦合永磁材料便是其中重要的分支之一。但到目前为止,在纳米耦合材料中实现的最大磁能积与其理论预言值仍然相去甚远。主要原因是在纳米永磁材料的制备过程中,如何实现理想的微观结构依然面临巨大的挑战。在本工作中,我们总结了快速热处理技术——电子束曝光,对Nd12.5-xFe80.8+xB6.2Nb0.2Ga0.3 (x = 0,2.5) 纳米耦合材料微观结构和磁性能的影响。相比于传统退火技术所需的退火晶化时间(15 min),电子束曝光下结晶时间仅需0.1 s,并且所需结晶温度降低约248 ℃(Nd2Fe14B单相材料)。在电子束曝光条件下,还观察到Nd2Fe14B和α-Fe相协同晶化效应。协同晶化不仅可以影响硬磁相和软磁相的晶粒形状、尺寸和成分,还可以影响它们之间的界面相互作用。随着Fe含量的增加,协同晶化的影响变得更加明显。由于电子束曝光下协同晶化改善了Nd2Fe14B和α-Fe相的均匀性以及抑制了晶粒的过度生长,因而电子束曝光相比于传统退火技术使材料获得了更加优异的磁性能。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 2011;23(7):821–42. 链接1

[ 2 ] Buschow KHJ. New developments in hard magnetic materials. Rep Prog Phys 1991;54(9):1123–213. 链接1

[ 3 ] Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y. New material for permanent magnets on a base of Nd and Fe. J Appl Phys 1984;55(6):2083–7. 链接1

[ 4 ] Sagawa M, Fujimura S, Yamamoto H, Matsuura Y, Hiraga K. Permanent magnet materials based on the rare earth–iron–boron tetragonal compounds. IEEE Trans Magn 1984;20(5):1584–9. 链接1

[ 5 ] Croat JJ, Herbst JF, Lee RW, Pinkerton FE. Pr–Fe and Nd–Fe-based materials: a new class of high-performance permanent magnets. J Appl Phys 1984;55 (6):2078–82. 链接1

[ 6 ] Croat JJ, Herbst JF, Lee RW, Pinkerton FE. High-energy product Nd–Fe–B permanent magnets. Appl Phys Lett 1984;44(1):148–9. 链接1

[ 7 ] Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys 1991;63(4):819–98. 链接1

[ 8 ] Kim AS, Camp FE. High performance NdFeB magnets. J Appl Phys 1996;79 (8):5035–9. 链接1

[ 9 ] Marinescu M, Chiriac H, Grigoras M. Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions. J Magn Magn Mater 2005;290–291:1267–9. 链接1

[10] Gong W, Li Q, Yin L. Temperature feature of NdDyFeB magnets with ultrahigh coercivity. J Appl Phys 1991;69(8):5512–4. 链接1

[11] Harland CL, Davies HA. Magnetic properties of melt-spun Nd-rich NdFeB alloys with Dy and Ga substitutions. J Alloys Compd 1998;281(1):37–40. 链接1

[12] Pan M, Zhang P, Li X, Ge H, Wu Q, Jiao Z, et al. Effect of terbium addition on the coercivity of the sintered NdFeB magnets. J Rare Earths 2010;28(Suppl 1):399–402. 链接1

[13] Kosobudskii ID, Sevost’yanov VP, Kuznetsov MY. Magnetic properties of R-Nd– Fe–B (R = Tb, Dy) and Nd–Fe–Co–B alloys in the range –80 to 250 C. Inorg Mater 2000;36(6):584–6. 链接1

[14] Kim AS. High coercivity Nd–Fe–B magnets with lower dysprosium content. J Appl Phys 1988;63(8):3519–21. 链接1

[15] Li S, Gu B, Yang S, Bi H, Dai Y, Tian Z, et al. Thermal behaviour and magnetic properties of B-rich NdFeB nanocomposite hard magnetic alloys with partial substitution of Dy for Nd. J Phys D Appl Phys 2002;35(8):732–7. 链接1

[16] Liu Z, Davies HA. Elevated temperature study of nanocrystalline (Nd/Pr)–Fe–B hard magnetic alloys with Co and Dy additions. J Magn Magn Mater 2005;290– 1:1230–3. 链接1

[17] Gong WJ, Wang X, Liu W, Guo S, Wang ZH, Cui WB, et al. Enhancing the perpendicular anisotropy of NdDyFeB films by Dy diffusion process. J Appl Phys 2012;111(7):07A729. 链接1

[18] Kim AS, Camp FE. Effect of minor grain boundary additives on the magnetic properties of NdFeB magnets. IEEE Trans Magn 1995;31(6):3620–2. 链接1

[19] Rodewald W, Wall B, Katter M, Uestuener K. Top Nd–Fe–B magnets with greater than 56 MGOe energy density and 9.8 kOe coercivity. IEEE Trans Magn 2002;38(5):2955–7. 链接1

[20] Sugimoto S. Current status and recent topics of rare-earth permanent magnets. J Phys D Appl Phys 2011;44(6):064001. 链接1

[21] Liu ZW, Davies HA. The practical limits for enhancing magnetic property combinations for bulk nanocrystalline NdFeB alloys through Pr, Co and Dy substitutions. J Magn Magn Mater 2007;313(2):337–41. 链接1

[22] Sepehri-Amin H, Ohkubo T, Hono K. Grain boundary structure and chemistry of Dy-diffusion processed Nd–Fe–B sintered magnets. J Appl Phys 2010;107 (9):09A745. 链接1

[23] Li D, Suzuki S, Kawasaki T, Machida K. Grain interface modification and magnetic properties of Nd–Fe–B sintered magnets. Jpn J Appl Phys 2008;47 (10):7876–8. 链接1

[24] Nakamura H, Hirota K, Ohashi T, Minowa T. Coercivity distributions in Nd–Fe– B sintered magnets produced by the grain boundary diffusion process. J Phys D Appl Phys 2011;44(6):064003. 链接1

[25] Coehoorn R, de Mooij DB, de Waard C. Meltspun permanent magnet materials containing Fe3B as the main phase. J Magn Magn Mater 1989;80(1):101–4. 链接1

[26] Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn 1991;27(4):3588–660. 链接1

[27] Bader SD. Colloquium: opportunities in nanomagnetism. Rev Mod Phys 2006;78(1):1–15. 链接1

[28] Yue M, Zhang X, Liu JP. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches. Nanoscale 2017;9 (11):3674–97. 链接1

[29] Zhang X, Zhang J, Wang W. A novel route for the preparation of nanocomposite magnets. Adv Mater 2000;12(19):1441–4. 链接1

[30] Tu G, Altounian Z, Ryan DH, Ström-Olsen JO. Crystallization and texturing in rapidly quenched Nd2Fe14B1 and Nd15Fe77B8. J Appl Phys 1988;63(8):3330–2. 链接1

[31] Jha A, Davies HA, Buckley RA. Glass forming ability and kinetics of crystallisation of rapidly quenched Nd–Fe–B alloys. J Magn Magn Mater 1989;80(1):109–14. 链接1

[32] Harland CL, Davies HA. Effect of Co and Zr on magnetic properties of nanophase PrFeB alloys. J Appl Phys 2000;87(9):6116–8. 链接1

[33] Wang Z, Zhou S, Zhang M, Qiao Y, Wang R. Effects of as-quenched structures on the phase transformations and magnetic properties of melt-spun Pr7Fe88B5 ribbons. J Appl Phys 1999;86(12):7010–6. 链接1

[34] Wang Z, Zhou S, Zhang M, Qiao Y, Gao X, Zhao Q, et al. Microstructure evolution and magnetic properties of overquenched Pr8Fe86B6 ribbons during annealing. J Appl Phys 1999;85(8):4880–2. 链接1

[35] Imai T, Kojima S, Jiang D. High strain rate superplasticity of SiCp/1100 and SiCp/ 1N90 P/M pure aluminum composites. Mater Sci Eng A 1997;225(1–2):184–7. 链接1

[36] Chang WC, Hsing DM. Magnetic properties and transmission electron microscopy microstructures of exchange coupled Nd12-xFe82+xB6 melt spun ribbons. J Appl Phys 1996;79(8):4843–5. 链接1

[37] Chen Z, Zhang Y, Ding Y, Hadjipanayis GC, Chen Q, Ma B. Magnetic properties and microstructure of nanocomposite R2(Fe,Co,Nb)14B/(Fe,Co) (R = Nd, Pr) magnets. J Appl Phys 1999;85(8):5908–10. 链接1

[38] Yajima K, Nakamura H, Kohmoto O, Yoneyama T. Microstructure of rapidly quenched Nd–Fe–Zr–B magnets. J Appl Phys 1988;64(10):5528–30. 链接1

[39] Kohmoto O, Yoneyama T, Yajima K. Magnetic properties of rapidly quenched Nd10Fe85-xTxB5 (T = Zr, Nb) alloys. Jpn J Appl Phys 1987;26(Pt 1):1804–5. 链接1

[40] Chiriac H, Marinescu M, Buschow KHJ, de Boer FR, Bruck E. Nanocrystalline Nd8Fe77Co5CuNb3B6 melt-spun ribbons. J Magn Magn Mater 1999; 203(1–3):153–5. 链接1

[41] Wu YQ, Ping DH, Hono K, Hamano M, Inoue A. Microstructural characterization of an a-Fe/Nd2Fe14B nanocomposite magnet with a remaining amorphous phase. J Appl Phys 2000;87(12):8658–65. 链接1

[42] Betancourt I, Davies HA. Influence of Zr and Nb dopant additions on the microstructure and magnetic properties of nanocomposite RE2(Fe,Co)14B/a(Fe, Co) (RE = Nd–Pr) alloys. J Magn Magn Mater 2003;261(3):328–36. 链接1

[43] Wang C, Yan M, Zhang WY. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd,Pr)2Fe14B/ a-Fe alloys. J Magn Magn Mater 2006;306(2):195–8. 链接1

[44] Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys 1988;64(10):6044–6. 链接1

[45] McHenry ME, Willard MA, Laughlin DE. Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 1999;44(4):291–433. 链接1

[46] McGuiness PJ, Short C, Wilson AF, Harris IR. The production and characterization of bonded, hot-pressed and die-upset HDDR magnets. J Alloys Compd 1992;184(2):243–55. 链接1

[47] Bollero A, Gebel B, Gutfleisch O, Müller KH, Schultz L, McGuiness PJ, et al. NdDyFeBZr high-coercivity powders prepared by intensive milling and the HDDR process. J Alloys Compd 2001;315(1–2):243–50. 链接1

[48] Bollero A, Gutfleisch O, Müller KH, Schultz L, Drazic G. High-performance nanocrystalline PrFeB-based magnets produced by intensive milling. J Appl Phys 2002;91(10):8159. 链接1

[49] Zhang XY, Guan Y, Zhang JW, Sprengel W, Reichle KJ, Blaurock K, et al. Evolution of interface structure of a-Fe/Nd2Fe14B nanocomposites prepared by crystallization from the amorphous alloy. Phys Rev B Condens Matter Mater Phys 2002;66(21):212103. 链接1

[50] Zhang XY, Guan Y, Zhang JW. Study of interface structure of a-Fe/Nd2Fe14B nanocomposite magnets. Appl Phys Lett 2002;80(11):1966–8. 链接1

[51] Guo D, Li W, Li X, Chen Y, Sato K, Zhang X. Improving the interfacial structure of nanocomposite magnets on an atomic scale. J Phys D Appl Phys 2010;43 (32):325003. 链接1

[52] Li W, Li X, Li L, Zhang J, Zhang X. Enhancement of the maximum energy product of a-Fe/Nd2Fe14B nanocomposite magnets by interfacial modification. J Appl Phys 2006;99(12):126103. 链接1

[53] Li W, Li L, Li X, Sun H, Zhang X. Enhanced coercivity in a-(Fe,Co)/(Nd,Pr)2Fe14B nanocomposite magnets via interfacial modification. J Phys D Appl Phys 2008;41(15):155003. 链接1

[54] Zhang Y, Li W, Li H, Zhang X. Coercivity mechanism of a-Fe/Nd2Fe14B nocomposite magnets with an intergranular amorphous phase. J Phys D Appl Phys 2014;47(1):015002. 链接1

[55] Li H, Lou L, Hou F, Guo D, Li W, Li X, et al. Simultaneously increasing the magnetization and coercivity of bulk nanocomposite magnets via severe plastic deformation. Appl Phys Lett 2013;103(14):142406. 链接1

[56] Rong CB, Wang D, Nguyen VV, Daniil M, Willard MA, Zhang Y, et al. Effect of selective Co addition on magnetic properties of Nd2(FeCo)14B/a–Fe nanocomposite magnets. J Phys D Appl Phys 2013;46(4):045001. 链接1

[57] Yue M, Niu PL, Li YL, Zhang DT, Liu WQ, Zhang JX, et al. Structure and magnetic properties of bulk isotropic and anisotropic Nd2Fe14B/a-Fe nanocomposite permanent magnets with different a-Fe contents. J Appl Phys 2008;103 (7):07E101. 链接1

[58] Roozeboom F, Dirne FWA. Rapid thermal annealing of amorphous and nanocrystalline soft-magnetic alloys in a static magnetic field. J Appl Phys 1995;77(10):5293–7. 链接1

[59] Yu M, Liu Y, Liou SH, Sellmyer DJ. Nanostructured NdFeB films processed by rapid thermal annealing. J Appl Phys 1998;83(11):6611–3. 链接1

[60] Jin ZQ, Liu JP. Rapid thermal processing of magnetic materials. J Phys D Appl Phys 2006;39(14):R227–44. 链接1

[61] Wu YQ, Ping DH, Murty BS, Kanekiyo H, Hirosawa S, Hono K. Influence of heating rate on the microstructure and magnetic properties of Fe3B/Nd2Fe14B nanocomposite magnets. Scr Mater 2001;45(3):355–62. 链接1

[62] Murillo N, González J, González JM, de Julián C, Cebollada F. Magnetic hardening of melt-spun 2:14:1-based materials by high heating rate and short time crystallization treatments. J Mater Res 1995;10(2):292–6. 链接1

[63] Fang JS, Chin TS, Chen SK. Nanocrystalline Nd6Fe88-xMxB6 (M = Ti or V) magnets by rapid thermal annealing. IEEE Trans Magn 1996;32(5):4401–3. 链接1

[64] Gao Y, Zhang S, Liu B. Crystallization behavior of melt-spun Nd7Fe86Nb1B6 ribbons under different heating rates. J Magn Magn Mater 2000;208(3):158–62. 链接1

[65] Kojima A, Makino A, Inoue A. Rapid-annealing effect on the microstructure and magnetic properties of the Fe-rich nanocomposite magnets. J Appl Phys 2000;87(9):6576–8. 链接1

[66] Jiang H, O’Shea MJ. The influence of anneal time on exchange-coupling in Nd2Fe14B/a-Fe films. IEEE Trans Magn 2001;37:2579–81. 链接1

[67] Chu KT, Jin ZQ, Chakka VM, Liu JP. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites. J Phys D Appl Phys 2005;38 (22):4009–14. 链接1

[68] Suzuki K, Cadogan JM, Uehara M, Hirosawa S, Kanekiyo H. Effect of Cr content on decomposition behaviour of amorphous Nd5Fe74Cr3B18. Scr Mater 2000;42 (5):487–92. 链接1

[69] Suzuki K, Cadogan JM, Uehara M, Hirosawa S, Kanekiyo H. Formation and decomposition of Fe3B/Nd2Fe14B nanocomposite structure in Fe–Nd–B–Cr melt-spun ribbons under isothermal annealing. J Appl Phys 1999;85 (8):5914–6. 链接1

[70] Bernardi J, Soto GF, Fidler J, David S, Givord D. Influence of microstructure on magnetic properties of nanocomposite RE5.5(Fe,Cr,M)76.5B18 (RE = Nd, Tb; Cr 3 at%; M = Co, Si) magnetic materials. J Appl Phys 1999;85(8):5905–7. 链接1

[71] Bernardi J, Schrefl T, Fidler J, Rijks T, de Kort K, Archambault V, et al. Preparation, magnetic properties and microstructure of lean rare-earth permanent magnetic materials. J Magn Magn Mater 2000;219(2):186–98. 链接1

[72] Jin ZQ, Cui BZ, Liu JP, Ding Y, Wang ZL, Thadhani NN. Controlling the crystallization and magnetic properties of melt-spun Pr2Fe14B/a-Fe nanocomposites by Joule heating. Appl Phys Lett 2004;84(22):4382–4. 链接1

[73] Tian H, Zhang Y, Han J, Xu Z, Zhang X, Liu S, et al. Synergetic crystallization in a Nd2Fe14B/a–Fe nanocomposite under electron beam exposure conditions. Nanoscale 2016;8(42):18221–7. 链接1

[74] Dang EKF, Gooding RJ. Theory of the effects of rapid thermal annealing on thin- film crystallization. Phys Rev Lett 1995;74(19):3848–51. 链接1

相关研究