期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第12期 doi: 10.1016/j.eng.2019.12.019

用高光谱发光法研究Cu(Inx,Ga1–x)Se2 (CIGS)模块中由P1引起的功率损耗的成因

a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany
b Photon Etc. Inc., Montréal, QC H2S 2X3, Canada
c Institute of Materials for Electronics and Energy Technology (i-MEET), Department for Material Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
91058, Germany
d Helmholtz Institute Erlangen-Nürnberg for Renewable Energy Production, Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany

收稿日期: 2019-09-10 修回日期: 2019-11-10 录用日期: 2019-12-03 发布日期: 2020-07-04

下一篇 上一篇

摘要

在本文中,我们利用了高光谱高分辨率光致发光映射技术,这是一个强大的工具,可用于选择和优化在Cu(Inx,Ga1-x)Se2(CIGS)模块上对子电池进行图案化互连的激光烧蚀工艺。通过这种方式,我们可以完成对消融区域附近材料降解的深度监测以及对潜在机制的识别。具体而言,通过分析在CIGS沉积之前烧蚀的标准P1图案线,我们发现了沿着下部的钼槽边缘的异常发射猝灭效应。通过扫描电子显微镜(SEM)比较了P1边缘的横截面的形貌,我们进一步合理化产生这种效应的起因,但无法用厚度变化解释光发射的减少。我们还研究了激光诱导对CIGS沉积后的P1图案线带来的损伤。然后,我们首次记录了短距离损坏区域,该区域与在激光路径上应用的光学孔径无关。我们的发现能更好地理解P1引起的功率损耗,并为改进与行业相关的模块互连方案提供了新的见解。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Yoshida S. Solar frontier achieves world record thin-film solar cell efficiency of 22.9%. Sol Front News 2017;12:2–3. 链接1

[ 2 ] Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY. Solar cell efficiency tables (version 54). Prog Photovoltaics Res Appl 2019;27:565–75. 链接1

[ 3 ] Yoshida, S. Solar frontier achieves world record thin-film solar cell efficiency of 23.35% [Internet]. Tokyo: Solar Frontier; 2019 Jan 17 [cited 2019 Jun 11]. Available from: https://www.solar-frontier.com/eng/news/2019/0117_press. html.

[ 4 ] Bermudez V, Perez-Rodriguez A. Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nat Energy 2018;3:466–75. 链接1

[ 5 ] Hutchins, M. NICE Solar Energy sets new world record for CIGS efficiency [Internet]. Berlin: pv magazine; 2019 Dec 4 [cited 2019 Jun 11]. Available from: https://www.pv-magazine.com/2019/12/04/nice-solar-energy-sets-new-worldrecord-for-cigs-efficiency/.

[ 6 ] Britt J. Photovoltaic manufacturing cost and throughput improvements for thin film CIGS-based modules. Final technical report. Golden; National Renewable Energy Laboratory; 2002 Apr. Report No.: NREL/SR-520-32072.

[ 7 ] Lee SW, Lee YJ, Lee YH, Chung JK, Kim DJ. A new laser patterning technology for low cost poly–Si thin film solar cells. In: Proceedings of SPIE Solar Energy + Technology II; 2010 Aug 1–4; San Diego, CA, USA; 2010.

[ 8 ] Crozier ML, Brunton AN, Abbas A, Bowers JW, Kaminski PM, Walls JM, et al. One step thin-film PV interconnection process using laser and inkjet. In: Proceedings of the 39th the IEEE Photovoltaic Specialists Conference; 2013 Jun; Tampa, FL, USA. Hoboken: Wiley; 2013; p. 16–21.

[ 9 ] Fields JD, Pach G, Horowitz KAW, Stockert TR, Woodhouse M, van Hest MFAM. Printed interconnects for photovoltaic modules. Sol Energy Mater Sol Cells 2017;159:536–45. 链接1

[10] Wagner M, Würz R, Kessler F. Post-monolithic interconnection of CIGS solar cells. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference; 2009 Sep 21–25; Hamburg, Germany; 2009.

[11] Pernet P, Goetz M, Niquille X, Fischer X, Shah A. Front contact and series connection problems of a-SI:H solar cells on polymer film substrates. In: Proceedings of 2nd World Conference Photovoltaic Energy Conversion; 1998 Jul 6–10; Vienna, Switzerland. Piscataway: IEEE; 1998. p. 976–9.

[12] Scheer R, Schock H. Chalcogenide photovoltaics. Berlin: Wiley-VCH; 2011. 链接1

[13] Schultz C, Basulto GAF, Ring S, Wolf C, Schlatmann R, Stegemann B. Revealing and identifying laser-induced damages in CIGSe solar cells by photoluminescence spectroscopy. J Photovoltaics 2017;7(5):1442–9. 链接1

[14] Schultz C, Schuele M, Stelmaszczyk K, Weizman M, Gref O, Friedrich F, et al. Laser-induced local phase transformation of CIGSe for monolithic serial interconnection: analysis of the material properties. Sol Energy Mater Sol Cells 2016;157:636–43. 链接1

[15] Lany S, Zunger A. Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe–VCu) vacancy complex. J Appl Phys 2006;100:113725. 链接1

[16] Tran TMH, Pieters BE, Ulbrich C, Gerber A, Kirchartz T, Rau U. Transient phenomena in Cu(In,Ga)Se2 solar modules investigated by electroluminescence imaging. Thin Solid Films 2013;535:307–10. 链接1

[17] Marcet S, Verhaegen M, Blais-Ouellette S, Martel R. Raman spectroscopy hyperspectral imager based on Bragg tunable filters. In: Proceedings of SPIE— The International Society for Optical Engineering; 2012 Feb 2–6; San Francisco, CA, USA. Bellingham:SPIE; 2012.

[18] Glebov AL, Mokhun O, Rapaport A, Vergnole S, Smirnov V, Glebov LB. Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Micro-Optics 2012;2012(8428): 84280C. 链接1

[19] Schüle M, Schultz C, Juzumas V, Stelmaszczyk K, Weizman M, Wolf C, et al. Laser patterning of CIGSe solar cells using nano- and picosecond pulsespossibilities and challenges. In: Proceedings of the 28th European Photovoltaic Conference and Exhibition; 2013 Oct 1–3; Paris, France; 2013.

[20] Westin PO, Wätjen JT, Zimmermann U, Edoff M. Microanalysis of laser microwelded interconnections in CIGS PV modules. Sol Energy Mater Sol Cells 2012;98:172–8. 链接1

[21] Heise G, Domke M, Konrad J, Pavic F, Schmidt M, Vogt H, et al. Monolithical serial interconnects of large cis solar cells with picosecond laser pulses. Phys Procedia 2011;12:149–55. 链接1

[22] Brown G, Faifer V, Pudov A, Anikeev S, Bykov E, Contreras M, et al. Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current. Appl Phys Lett 2010;96:30–2. 链接1

[23] Delamarre A, Ory D, Paire M, Lincot D, Guillemoles JF, Lombez L. Evaluation of micrometer scale lateral fluctuations of transport properties in CIGS solar cells. In: Proceedings of the 2013 Physics, Simulation, Photonic Engineering Photovolt Devices II; 2013 Mar 25; San Francisco, CA, USA; 2013.

[24] Schultz C, Schule M, Stelmaszczyk K, Weizman M, Gref O, Friedrich F, et al. Controlling the thermal impact of ns laser pulses for the preparation of the P2 interconnect by local phase transformation in CIGSe. In: Proceedings of the 2015 IEEE 42nd Photovolt Specialist Conference PVSC; 2015 Jun 14–19; New Orleans, LA, USA. New York: IEEE; 2015. p. 13–6.

[25] Ruckh M, Kessler J, Oberacker TA, Schock HW. Thermal decomposition of ternary chalcopyrite thin films. Jpn J Appl Phys 1993;32:65–7. 链接1

[26] Hermann J, Benfarah M, Bruneau S, Axente E, Coustillier G, Itina T, et al. Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. J Phys D Appl Phys 2006;39:453–60. 链接1

[27] Parravicini J, Acciarri M, Murabito M, Donne AL, Gasparotto A, Binetti S. Indepth photoluminescence spectra of pure CIGS thin films. Appl Opt 2018;57:1849–56. 链接1

相关研究