期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第9期 doi: 10.1016/j.eng.2020.01.013

构建二维层状结构的稠环含能材料——高能量与高稳定性的平衡

a Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA
b Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

收稿日期: 2019-09-28 修回日期: 2019-11-29 录用日期: 2020-01-08 发布日期: 2020-06-10

下一篇 上一篇

摘要

制造具有良好机械感度的高性能含能材料在过去几十年里一直是一项重大挑战,因为这类蕴含巨大能量的材料存在内在的不稳定性。本文研究了一种极具潜力的稠环含能材料:4-硝基-7-叠氮基-吡唑-[3,4-d]-1,2,3-三嗪-2-氧(NAPTO)。这种物质具有不同寻常的二维(2D)层状结构,其绝对结构已经单晶X射线衍射证实。研究显示,这一结构新颖的含能物质具有惊人的能量[如爆速(D)高达9.12 km·s–1,爆压(P)为35.1 GPa]、优异的机械感度[撞击感度(IS)为18 J、摩擦感度(FS)为325 N、静电感度(EDS)为0.32 J]和良好的热分解温度(203.2 ℃),展示出高能量与低感度的双重优势。据我们所知,NAPTO是首个具有二维层状结构的稠环含能材料。与此同时,运用分子模拟分析了其在外界机械刺激下的稳定机制,结果表明,该含能材料超平的二维层状结构比其他结构更能有效地缓冲外界机械刺激,从而将作用在材料上的机械能转化为晶体的层间滑动与压缩。本研究从实验和理论两个方面揭示了稠环二维层状结构在制造先进含能材料方面的巨大潜力。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Klapötke TM. Structure and bonding: high energy density materials. Berlin: Springer; 2007. p. 36–7.

[ 2 ] Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. p. 1–2.

[ 3 ] Eiland PF, Pepinsky R. The crystal structure of cyclotetramethylene tetranitramine. Z Krist-Cryst Mater 1954;106(16):273–98. 链接1

[ 4 ] Choi CS, Prince E. The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B 1972;28(9):2857–62. 链接1

[ 5 ] Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM. CL20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech 1997;22(5):249–55. 链接1

[ 6 ] Zhang MX, Eaton PE, Gilardi R. Hepta- and octanitrocubanes. Angew Chem Int Ed 2000;39(2):401–4. 链接1

[ 7 ] Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R. Single-bonded cubic form of nitrogen. Nat Mater 2004;3(8):558–63. 链接1

[ 8 ] Zhurova EA, Stash AI, Tsirelson VG, Zhurov VV, Bartashevich EV, Potemkin VA, et al. Atoms-in-molecules study of intra- and intermolecular bonding in the pentaerythritol tetranitrate crystal. J Am Chem Soc 2006;128(45):14728–34. 链接1

[ 9 ] Zhurova EA, Zhurov VV, Pinkerton AA. Structure and bonding in b-HMXcharacterization of a trans-annular NN interaction. J Am Chem Soc 2007;129 (45):13887–93. 链接1

[10] Joo YH, Shreeve JM. High-density energetic mono- or bis(oxy)-5- nitroiminotetrazoles. Angew Chem Int Ed 2010;49(40):7320–3. 链接1

[11] Klapötke TM, Martin FA, Stierstorfer J. C2N14: an energetic and highly sensitive binary azidotetrazole. Angew Chem Int Ed 2011;50(18):4227–9. 链接1

[12] Raza Z, Pickard CJ, Pinilla C, Saitta AM. High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys Rev Lett. 2013;111 (23):235501.

[13] Fischer D, Klapotke TM, Stierstorfer J. 1,5-Di(nitramino)tetrazole: high sensitivity and superior explosive performance. Angew Chem Int Ed 2015;54 (35):10299–302. 链接1

[14] Bennion JC, Chowdhury N, Kampf JW, Matzger AJ. Hydrogen peroxide solvates of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Angew Chem Int Ed 2016;55(42):13118–21. 链接1

[15] Xia K, Sun J, Pickard CJ, Klug DD, Needs RJ. Ground state structure of high-energy-density polymeric carbon monoxide. Phys Rev B 2017;95: 144102.

[16] Yu Q, Yin P, Zhang JH, He CL, Imler GH, Parrish DA, et al. Pushing the limits of oxygen balance in 1,3,4-oxadiazoles. J Am Chem Soc 2017;139(26):8816–9. 链接1

[17] Zhang WQ, Zhang JH, Deng MC, Qi XJ, Nie FD, Zhang QH. A promising highenergy-density material. Nat Commun 2017;8:1–7. 链接1

[18] Zhang C, Sun CG, Hu BC, Yu CM, Lu M. Synthesis and characterization of the pentazolate anion cyclo-N5 - in (N5)6(H3O)3(NH4)4Cl. Science 2017;355 (6323):374–6. 链接1

[19] Xu YG, Wang Q, Shen C, Lin QH, Wang PC, Lu M. A series of energetic metal pentazolate hydrates. Nature 2017;549(7670):78–81. 链接1

[20] Yang C, Zhang C, Zheng ZS, Jiang C, Luo J, Du Y, et al. Synthesis and characterization of cyclo-pentazolate salts of NH4 + , NH3OH+ , N2H5 + , C(NH2)3 + , and N(CH3)4 + . J Am Chem Soc 2018;140(48):16488–94. 链接1

[21] Zhang CY. Origins of the energy and safety of energetic materials and of the energy & safety contradiction. Propellants Explos Pyrotech 2018;43(9):855–6. 链接1

[22] Wang Y, Liu YJ, Song SW, Yang ZJ, Qi XJ, Wang KC, et al. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun 2018;9(2444):1–11. 链接1

[23] Thottempudi V, Forohor F, Parrish DA, Shreeve JM. Tris(triazolo)benzene and its derivatives: high-density energetic materials. Angew Chem Int Ed 2012;51 (39):9881–5. 链接1

[24] Chavez DE, Bottaro JC, Petrie M, Parrish DA. Synthesis and thermal behavior of a fused, tricyclic 1,2,3,4-tetrazine ring system. Angew Chem Int Ed 2015;54 (44):12973–5. 链接1

[25] Klenov MS, Guskov AA, Anikin OV, Churakov AM, Strelenko YA, Fedyanin IV, et al. Synthesis of tetrazino-tetrazine 1,3,6,8-tetraoxide (TTTO). Angew Chem Int Ed 2016;55(38):11472–5. 链接1

[26] Yin P, Zhang JH, Mitchell LA, Parrish DA, Shreeve JM. 3,6-Dinitropyrazolo[4,3-c] pyrazole-based multipurpose energetic materials through versatile Nfunctionalization strategies. Angew Chem Int Ed 2016;55(41):12895–7. 链接1

[27] Thottempudi V, Yin P, Zhang JH, Parrish DA, Shreeve JM. 1,2,3-triazolo[4,5,- e]furazano[3,4,-b]pyrazine 6-oxide—a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials. Chemistry 2014;20(2):542–8. 链接1

[28] Schulze MC, Scott BL, Chavez DE. A high density pyrazolo-triazine explosive (PTX). J Mater Chem A Mater Energy Sustain 2015;3(35):17963–5. 链接1

[29] Piercey DG, Chavez DE, Scott BL, Imler GH, Parrish DA. An energetic triazolo1,2,4-triazine and its N-oxide. Angew Chem Int Ed 2016;55(49):15315–8. 链接1

[30] Tang YX, Kumar D, Shreeve JM. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4-tetrazine. J Am Chem Soc 2017;139(39):13684–7. 链接1

[31] Chavez DE, Parrish DA, Mitchell L, Imler GH. Azido and tetrazolo 1,2,4,5- tetrazine N-oxide. Angew Chem Int Ed 2017;56(13):3575–8. 链接1

[32] Singer IL, Pollock HM. Fundamentals of friction: macroscopic and microscopic processes. Braunlage: Springer Science+Business Media Dordrecht; 1991. p. 238–41.

[33] Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM. Superlubricity of graphite. Phys Rev Lett 2004;92(12):126101.

[34] Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, et al. Frictional characteristics of atomically thin sheets. Science 2010;328(5974):76–80. 链接1

[35] Liu Z, Yang JR, Grey F, Liu JZ, Liu YL, Wang YB, et al. Observation of microscale superlubricity in graphite. Phys Rev Lett 2012;108(20):205503. 链接1

[36] Koren E, Lortscher E, Rawlings C, Knoll AW, Duerig U. Adhesion and friction in mesoscopic graphite contacts. Science 2015;348(6235):679–83. 链接1

[37] Zhang C. Investigation of the slide of the single layer of the 1,3,5-triamino2,4,6-trinitrobenzene crystal: sliding potential and orientation. J Phys Chem B 2007;111(51):14295–8. 链接1

[38] Zhang C. Computational investigation on the desensitizing mechanism of graphite in explosives versus mechanical stimuli: compression and glide. J Phys Chem B 2007;111(22):6208–13. 链接1

[39] Zhang CY, Wang XC, Huang H. p-stacked interactions in explosive crystals: buffers against external mechanical stimuli. J Am Chem Soc 2008;130 (26):8359–65. 链接1

[40] Ma Y, Zhang AB, Zhang CH, Jiang DJ, Zhu YQ, Zhang CY. Crystal packing of lowsensitivity and high-energy explosives. Cryst Growth Des 2014;14 (9):4703–13. 链接1

[41] Zhang CY, Jiao FB, Li HZ. Crystal engineering for creating low sensitivity and highly energetic materials. Cryst Growth Des 2018;18(10):5713–26. 链接1

[42] Dong H. The development and countermeasure of high energy density materials. Chin J Energy Mater 2004;12:1–12. 链接1

[43] Deng MC, Feng YA, Zhang WQ, Qi XJ, Zhang QH. A green metal-free fused-ring initiating substance. Nat Commun 2019;10(1):1–8. 链接1

[44] Semeraro T, Mugnaini C, Manetti F, Pasquini S, Corelli F. Practical synthesis of novel purine analogues as Hsp90 inhibitors. Tetrahedron 2008;64 (49):11249–55. 链接1

[45] Squarcialupi L, Falsini M, Catarzi D, Varano F, Betti M, Varani K, et al. Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorg Med Chem 2016;24 (12):2794–808. 链接1

[46] Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 1968;48(1):23–35. 链接1

[47] Kamlet MJ, Ablard JE. Chemistry of detonations. II. Buffered equilibria. J Chem Phys 1968;48(1):36–42. 链接1

[48] Kamlet MJ, Dickinson C. Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J Chem Phys 1968;48 (1):43–50. 链接1

[49] Fischer D, Klapotke TM, Stierstorfer J. Potassium 1,10 -dinitramino-5,50 - bistetrazolate: a primary explosive with fast detonation and high initiation power. Angew Chem Int Ed 2014;53(31):8172–5. 链接1

相关研究