期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第11期 doi: 10.1016/j.eng.2020.02.011

时间序列多组学整合分析揭示原代肝细胞体外培养去分化过程伴随非降解性泛素化修饰的增加

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China

# These authors contributed equally to this work.

收稿日期: 2019-12-29 修回日期: 2020-02-07 录用日期: 2020-02-20 发布日期: 2020-06-08

下一篇 上一篇

摘要

目前,原代肝细胞(PHC)在各个研究领域被广泛使用,但是由于在体外培养过程中肝细胞特异性功能的迅速退化(即去分化),严重限制了它的应用范围。尽管学者已经对PHC的转录调控和全细胞蛋白质组(WCP)进行了广泛研究,但只有为数不多的研究考虑了蛋白质翻译后修饰(PTM)在这一过程中的作用。为了揭示引起PHC去分化的潜在机制,我们收集了在体外培养0 h、6 h、12 h、24 h和48 h的大鼠原代肝细胞样本,对各个时间点细胞样本的转录组、WCP、泛素化蛋白质组和磷酸化蛋白质组进行了定量分析。我们的数据包含了原代肝细胞体外培养去分化过程中详细的多组学分析结果,包括2196个蛋白质、2056个泛素化修饰位点和4932个磷酸化修饰位点。这项研究表明,PHC去分化过程中基因转录水平和蛋白质表达量之间的相关性较低。泛素化修饰组和对应的WCP联合分析表明,PHC去分化伴随着非降解性K27泛素化修饰位点的增加。对差异表达的磷酸化修饰蛋白进行功能富集分析,表明该过程中有铁死亡参与。其中,有404种蛋白质同时具有泛素化修饰位点和磷酸化修饰位点,被鉴定为与去分化事件有关的关键蛋白。最终,Ptbp1HnrpdHnrnpuSrrm2被鉴定为PHC去分化过程中的hub分子。综上所述,我们的数据为抑制原代肝细胞体外培养去分化提供了潜在靶点分子及新的见解。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Gomez-Lechon MJ, Tolosa L, Conde I, Donato MT. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 2014;10(11):1553–68. 链接1

[ 2 ] Xia Y, Carpentier A, Cheng X, Block PD, Zhao Y, Zhang Z, et al. Human stem cellderived hepatocytes as a model for hepatitis B virus infection, spreading and virus–host interactions. J Hepatol 2017;66(3):494–503. 链接1

[ 3 ] Soltys KA, Setoyama K, Tafaleng EN, Gutiérrez AS, Fong J, Fukumitsu K, et al. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. J Hepatol 2017;66(5):987–1000. 链接1

[ 4 ] Schuetz EG, Li D, Omiecinski CJ, Muller-Eberhard U, Kleinman HK, Elswick B, et al. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol 1988;134(3):309–23. 链接1

[ 5 ] Heslop JA, Rowe C, Walsh J, Sison-Young R, Jenkins R, Kamalian L, et al. Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile. Arch Toxicol 2017;91(1):439–52. 链接1

[ 6 ] Cicchini C, Amicone L, Alonzi T, Marchetti A, Mancone C, Tripodi M. Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver Int 2015;35(2):302–10. 链接1

[ 7 ] Mehta A, Comunale MA, Rawat S, Casciano JC, Lamontagne J, Herrera H, et al. Intrinsic hepatocyte dedifferentiation is accompanied by upregulation of mesenchymal markers, protein sialylation and core alpha 1,6 linked fucosylation. Sci Rep 2016;6:27965. 链接1

[ 8 ] Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco–toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2013;87(4):577–610. 链接1

[ 9 ] Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 2004;303(5662):1378–81. 链接1

[10] Lauschke VM, Vorrink SU, Moro SM, Rezayee F, Nordling Å, Hendriks DFG, et al. Massive rearrangements of cellular microRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology 2016;64(5):1743–56. 链接1

[11] Ahmed HMM, Salerno S, Morelli S, Giorno L, de Bartolo L. 3D liver membrane system by co-culturing human hepatocytes, sinusoidal endothelial and stellate cells. Biofabrication 2017;9(2):025022. 链接1

[12] Bale SS, Geerts S, Jindal R, Yarmush ML. Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep 2016;6:25329. 链接1

[13] Hiramatsu K, Matsumoto Y, Miyazaki M, Tsubouchi H, Yamamoto I, Gohda E. Inhibition of hepatocyte growth factor production in human fibroblasts by ursodeoxycholic acid. Biol Pharm Bull 2005;28(4):619–24. 链接1

[14] Vinken M, Papeleu P, Snykers S, de Rop E, Henkens T, Chipman JK, et al. Involvement of cell junctions in hepatocyte culture functionality. Crit Rev Toxicol 2006;36(4):299–318. 链接1

[15] Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, et al. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011;32(29):7042–52. 链接1

[16] Xiang C, Du Y, Meng G, Soon YL, Sun S, Song N, et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 2019;64 (6438):399–402. 链接1

[17] Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature 2011;73 (7347):337–42. 链接1

[18] Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009;78:363–97. 链接1

[19] Williamson A, Werner A, Rape M. The Colossus of ubiquitylation: decrypting a cellular code. Mol Cell 2013;49(4):591–600. 链接1

[20] Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E, MoranCrusio K, et al. Regulation of pluripotency and cellular reprogramming by the ubiquitin–proteasome system. Cell Stem Cell 2012;11(6):783–98. 链接1

[21] Choi J, Baek KH. Cellular functions of stem cell factors mediated by the ubiquitin–proteasome system. Cell Mol Life Sci 2018;75(11):1947–57. 链接1

[22] Pagani M, Rockstroh M, Schuster M, Rossetti G, Moro M, Crosti M, et al. Reference proteome of highly purified human Th1 cells reveals strong effects on metabolism and protein ubiquitination upon differentiation. Proteomics 2015;15(21):3644–7. 链接1

[23] Bax M, McKenna J, Do-Ha D, Stevens CH, Higginbottom S, Balez R, et al. The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation. Cells 2019;8(6):581. 链接1

[24] Elia AE, Boardman AP, Wang DC, Huttlin EL, Everley RA, Dephoure N, et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell 2015;59(5):867–81. 链接1

[25] Iesmantavicius V, Weinert BT, Choudhary C. Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Mol Cell Proteomics 2014;13(8):1979–92. 链接1

[26] Kreamer BL, Staecker JL, Sawada N, Sattler GL, Stephen Hsia MT, Pitot HC. Use of a low-speed, iso-density percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations. Vitro Cell Dev Biol 1986;22 (4):201–11. 链接1

[27] Deeb SJ, D’Souza RC, Cox J, Schmidt-Supprian M, Mann M. Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics 2012;11(5):77–89. 链接1

[28] Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrixassisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 2003;75(3):663–70. 链接1

[29] Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, et al. iProX: an integrated proteome resource. Nucleic Acids Res 2019;47(D1):D1211–7. 链接1

[30] Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 1990;18(20):6097–100. 链接1

[31] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(D1):D607–13. 链接1

[32] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498–504. 链接1

[33] Chin CH, Chen SH, Wu HH, Ho CW, Mt Ko, Lin CY, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014;8(Suppl 4):S11. 链接1

[34] Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 2016;13(9):731–40. 链接1

[35] World Health Organization. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. In: WHO guidelines approved by the Guidelines Review Committee. Geneva: World Health Organization; 2015.

[36] Boersema PJ, Geiger T, Wis´niewski JR, Mann M. Quantification of the Nglycosylated secretome by super-SILAC during breast cancer progression and in human blood samples. Mol Cell Proteomics 2013;12(1):158–71. 链接1

[37] Beigel J, Fella K, Kramer PJ, Kroeger M, Hewitt P. Genomics and proteomics analysis of cultured primary rat hepatocytes. Toxicol In Vitro 2008;22 (1):171–81. 链接1

[38] Rowe C, Goldring CE, Kitteringham NR, Jenkins RE, Lane BS, Sanderson C, et al. Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J Proteome Res 2010;9(5):2658–68. 链接1

[39] Correia MA, Sadeghi S, Mundo-Paredes E. Cytochrome P450 ubiquitination: branding for the proteolytic slaughter? Annu Rev Pharmacol Toxicol 2005;45:439–64. 链接1

[40] Banerjee A, Kocarek TA, Novak RF. Identification of a ubiquitinationtarget/substrate-interaction domain of cytochrome P-450 (CYP) 2E1. Drug Metab Dispos 2000;28(2):118–24. 链接1

[41] Huan JY, Streicher JM, Bleyle LA, Koop DR. Proteasome-dependent degradation of cytochromes P450 2E1 and 2B1 expressed in tetracycline-regulated HeLa cells. Toxicol Appl Pharmacol 2004;199(3):332–43. 链接1

[42] Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitinproteasome system. Nat Rev Mol Cell Biol 2008;9(9):679–90. 链接1

[43] Lai Y, Zhu M, Wu W, Rokutanda N, Togashi Y, Liang W, et al. HERC2 regulates RPA2 by mediating ATR-induced Ser33 phosphorylation and ubiquitindependent degradation. Sci Rep 2019;9(1):14257. 链接1

[44] Li D, Yang W, Ren J, Ru Y, Zhang K, Fu S, et al. The E3 ubiquitin ligase TBK1 mediates the degradation of multiple picornavirus VP3 proteins by phosphorylation and ubiquitination. J Virol 2019;93:e01438–19. 链接1

[45] Wanet A, Remacle N, Najar M, Sokal E, Amould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol 2014;54:174–85. 链接1

[46] Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol 2019;20(1):185. 链接1

[47] Baker TK, Carfagna MA, Gao H, Dow ER, Li Q, Searfoss GH, et al. Temporal gene expression analysis of monolayer cultured rat hepatocytes. Chem Res Toxicol 2001;14(9):1218–31. 链接1

[48] Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, et al. Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 2012;11(5):148–59. 链接1

[49] Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, et al. A proteomewide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 2011;10(10). 链接1

[50] van der Wal L, Bezstarosti K, Sap KA, Dekkersa DHW, Rijkersa E, Mientjes E, et al. Improvement of ubiquitylation site detection by Orbitrap mass spectrometry. J Proteomics 2018;172:49–56. 链接1

[51] Sap KA, Bezstarosti K, Dekkers DHW, Voets O, Demmers JAA. Quantitative proteomics reveals extensive changes in the ubiquitinome after perturbation of the proteasome by targeted dsRNA-mediated subunit knockdown in Drosophila. J Proteome Res 2017;16(8):2848–62. 链接1

[52] Quadroni M, Potts A, Waridel P. Hsp90 inhibition induces both protein-specific and global changes in the ubiquitinome. J Proteomics 2015;120:215–29. 链接1

[53] Fiskin E, Bionda T, Dikic I, Behrends C. Global analysis of host and bacterial ubiquitinome in response to salmonella typhimurium infection. Mol Cell 2016;62(6):967–81. 链接1

[54] Dybas JM, O’Leary CE, Ding H, Spruce LA, Seeholzer SH, Oliver PM. Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4+ T cells. Nat Immunol 2019;20(6):747–55. 链接1

[55] Noya SB, Colameo D, Bruning F, Spinnler A, Mircsof D, Opitz L, et al. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 2019;366(6462):eaav2642. 链接1

[56] Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 2012;3(4):227–32. 链接1

[57] Xu G, Paige JS, Jaffrey SR. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 2010;8(8):868–73. 链接1

[58] Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;49 (5):1060–72. 链接1

[59] Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotypeselective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 2003;3(3):285–96. 链接1

[60] Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, et al. Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol 2012;8:599. 链接1

相关研究