期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第9期 doi: 10.1016/j.eng.2020.02.014

氧化石墨烯掺杂增强Al@AP/PVDF亚稳态复合物燃烧性能研究

Science and Technology on Combustion, Internal Flow and Thermostructure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China

收稿日期: 2019-09-27 修回日期: 2020-01-17 录用日期: 2020-02-25 发布日期: 2020-08-12

下一篇 上一篇

摘要

利用喷雾造粒技术制备了一类新型的亚稳态分子间复合含能材料(metastable intermixed composite, MIC)。这种复合材料由铝(Al)、高氯酸铵(ammonium perchlorate, AP)和聚偏氟乙烯(polyvinylidene fluoride, PVDF)组成,其中Al作为燃料,AP和PVDF共同作为氧化剂,并根据最大反应放热量确定AP和PVDF的添加比例。此外,在材料中还掺杂了少量的氧化石墨烯(graphene oxide, GO)充当润滑剂和催化剂。结果表明,含有0.2%氧化石墨烯的Al@AP/PVDF具有最大的密度(2.57 g·cm–3)和最高的反应放热量(5999.5 J·g–1)。这些值远高于Al@AP/PVDF的密度(2.00 g·cm–3)和反应放热量(5569.8 J·g–1)。氧化石墨烯的加入提高了Al@AP/PVDF的反应速率并改善了其热稳定性。掺杂0.2%氧化石墨烯的Al@AP/PVDF使得火焰传播速率达到了4.76 m·s–1,相对于Al@AP/PVDF的火焰传播速率提高了约10.7%。掺杂氧化石墨烯的Al@AP/PVDF(Al@AP/PVDF-GO)具有更好的界面接触和颗粒分散性,从而提高了传热速率,消除了纳米铝(nano-Al)粉微粒的团聚现象,提高了燃烧反应速率。本研究使得铝基MIC的能量释放和燃烧效率得到了提高。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] He W, Liu PJ, He GQ, Gozin M, Yan QL. Highly reactive metastable intermixed composites (MICs): preparation and characterization. Adv Mater 2018;30 (41):1706293. 链接1

[ 2 ] Bockmon BS, Pantoya ML, Son SF, Asay BW, Mang JT. Combustion velocities and propagation mechanisms of metastable interstitial composites. J Appl Phys 2005;98(6):064903. 链接1

[ 3 ] Yan QL, Zhao FQ, Kuo KK, Zhang XH, Zeman S, DeLuca LT. Catalytic effects of nano additives on decomposition and combustion of RDX- HMX-, and APbased energetic compositions. Prog Energ Combust Sci 2016;57:75–136. 链接1

[ 4 ] Yan QL, Gozin M, Zhao FQ, Cohen A, Pang SP. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 2016; 8(9):4799–851. 链接1

[ 5 ] Asay BW, Son SF, Busse JR, Oschwald DM. Ignition characteristics of metastable intermolecular composites. Propellants Explos Pyrotech 2010;29(4):216–9. 链接1

[ 6 ] Siegert B, Comet M, Muller O, Pourroy G, Spitze D. Reduced-sensitivity nanothermites containing manganese oxide filled carbon nanofibers. J Phys Chem C 2010;114(46):19562–8. 链接1

[ 7 ] Yu C, Zhang W, Shen R, Xu X, Cheng J, Ye JH, et al. Tunable microwave absorption in Co–Al substituted M-type Ba–Sr hexagonal ferrite. Mater Des 2016;110:749–61. 链接1

[ 8 ] Gao K, Li G, Luo Y, Wang L, Shen L, Wang G. Preparation and characterization of the AP/Al/Fe2O3 ternary nano-thermites. J Therm Anal Calorim 2014;118 (1):43–9. 链接1

[ 9 ] Joshi A, Mer KKS, Bhattacharya S, Patel VK. Nano-aluminium as catalyst in thermal decomposition of energetic materials. In: Bhattacharya S, Agarwal A, Rajagopalan T, Patel V, editors. Nano-energetic materials. Singapore: Springer; 2019. p. 109–20. 链接1

[10] Zhu YL, Huang H, Ren H, Jiao QL. Influence of aluminum particle size on thermal decomposition of RDX. J Energ Mater 2013;31(3):178–91. 链接1

[11] Sadeghipour S, Ghaderian J, Wahid MA. Advances in aluminum powder usage as an energetic material and applications for rocket propellant. In: Proceedings of the 4th International Meeting of Advances in Thermofluids; 2011 Oct 3–4; Melaka, Malaysia; 2012..

[12] He W, Liu P, Gong F, Tao B, Gu J, Yang Z, et al. Tuning the reactivity of metastable intermixed composite n-Al/PTFE by polydopamine interfacial control. Appl Mater Interfaces 2018;10:32849–58. 链接1

[13] He W, Ao W, Yang GC, Yang ZJ, Guo ZQ, Liu PJ, et al. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases. Chem Eng J 2019;381:122623. 链接1

[14] Tang DY, Chen SW, Liu XL, He W, Yang GC, Liu PJ, et al. Controlled reactivity of metastable n-Al@Bi(IO3)3 by employment of tea polyphenols as an interfacial layer. Chem Eng J 2019;381:122747. 链接1

[15] Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim 2013;113(2):721–30. 链接1

[16] Fang C, Li S. Experimental research of the effects of superfine aluminum powders on the combustion characteristics of NEPE propellants. Propellants Explos Pyrotech 2002;27(1):34–8. 链接1

[17] Li D, Zhao F, Li S, Xu H, Li Y. Combustion property of NEPE propellant with CL20. Chin J Energ Mater 2007;15(4):324–8. 链接1

[18] Yang V, Brill TB, Ren WZ. Solid propellant chemistry, combustion, and motor interior ballistics. Reston: American Institute of Aeronautics and Astronautics, Inc; 2000. 链接1

[19] Armstrong RW, Baschung B, Booth DW, Samirant M. Enhanced propellant combustion with nanoparticles. Nano Lett 2003;3(2):253–5. 链接1

[20] Nandagopal S, Mehilal M, Tapaswi MA, Jawalkar SN, Radhakrishnan KK, Bhattacharya B. Effect of coating of ammonium perchlorate with fluorocarbon on ballistic and sensitivity properties of AP/Al/HTPB propellant. Propellants Explos Pyrotech 2009;34(6):526–31. 链接1

[21] John HJ, Hudson FE, Robbs R. High strain rate testing of AP/Al/HTPB solid propellants. Aip Conference Process 1998;429(1):603–6. 链接1

[22] Wang H, Jacob RJ, DeLisio JB, Zachariah MR. Assembly and encapsulation of aluminum NP’s within AP/NC matrix and their reactive properties. Combust Flame 2017;180:175–83. 链接1

[23] Li JZ, Fan XZ, Zhong L, Liu X. Mechanical properties of NC/NG/AP/Al composite modified double-base propellant. Chin J Energ Mater 2007;15 (4):345–8. 链接1

[24] Huang S, Pan M, Deng S, Jiang Y, Zhao J, Wendt BL, et al. Modified microemulsion synthesis of highly dispersed Al/PVDF composites with enhanced combustion properties. Adv Eng Mater 2019;21(5):1801330. 链接1

[25] Sippel TR, Son SF, Groven LJ. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech 2013;38(2):286–95. 链接1

[26] Wang J, Zeng C, Zhan C, Zhang L. Tuning the reactivity and combustion characteristics of PTFE/Al through carbon nanotubes and grapheme. Thermochim Acta 2019;676:276–81. 链接1

[27] Lyu JY, Chen S, He W, Zhang XX, Tang DE, Liu PJ, et al. Fabrication of highperformance graphene oxide doped PVDF/CuO/Al nanocomposites via electrospinning. Chem Eng J 2019;368:129–37. 链接1

[28] DeLisio JB, Huang C, Jian G, Zachariah M, Young G. Ignition and reaction analysis of high loading nano-Al/fluoropolymer energetic composite films. In: Proceedings of the 52nd Aerospace Sciences Meeting; 2014 Jan 13–17; National Harbor, Washington, DC, USA; 2014.

相关研究