期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第11期 doi: 10.1016/j.eng.2020.02.015

增材制造可降解镁合金植入物面临的挑战及其对策

a National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b Shanghai Innovation Institute for Materials, Shanghai 200444, China
c National and Local Joint Engineering Research Center of Orthopedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China

# These authors contributed equally to this work.

收稿日期: 2019-07-11 修回日期: 2019-12-19 录用日期: 2020-02-20 发布日期: 2020-08-25

下一篇 上一篇

摘要

增材制造(AM)技术具有制备复杂几何结构的能力,为可降解金属植入物的制备提供了前所未有的机会,尤其对具有合适力学性能和良好生物相容性的可降解镁合金。然而,AM可降解镁基植入物面临着许多挑战,如镁粉制备困难以及AM过程中的粉体飞溅和裂纹形成。本文分析了AM可降解镁合金所面临的挑战,并提出了相应的应对策略,成功制备了一种表面光滑且圆整度好的新型镁合金(JDBM)粉体,然后对其AM参数进行了优化。在优化参数的基础上,采用选区激光熔化(SLM)技术制备了三种不同结构(仿生、金刚石和极小曲面)的JDBM多孔支架,并分析了其力学性能和降解行为。最后,筛选出性能最优的极小曲面支架进行透钙磷石(DCPD)涂层处理,该涂层极大地抑制了支架降解速率,并提高了其细胞相容性。AM镁合金支架展现了作为骨组织工程支架的临床应用前景。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006;27(9):1728–34. 链接1

[ 2 ] Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 2014;10 (11):4561–73. 链接1

[ 3 ] Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 2016;68:948–63. 链接1

[ 4 ] Zhao D, Witte F, Lu F, Wang J, Li J, Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 2017;112:287–302. 链接1

[ 5 ] Farraro KE, Kim KE, Woo SLY, Flowers JR, McCullough MB. Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J Biomech 2014;47(9):1979–86. 链接1

[ 6 ] Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater 2016;3(2):79–86. 链接1

[ 7 ] Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elb Surg 2003;12(1):35–9. 链接1

[ 8 ] Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006;27 (7):1013–8. 链接1

[ 9 ] Walker J, Shadanbaz S, Woodfield TBF, Staiger MP, Dias GJ. Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res Part B Appl Biomater 2014;102 (6):1316–31. 链接1

[10] Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26(17):3557–63. 链接1

[11] Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bonefracture healing in rats. Nat Med 2016;22(10):1160–9. 链接1

[12] Kannan MB, Raman RKS. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified–simulated body fluid. Biomaterials 2008;29(15):2306–14. 链接1

[13] Qin H, Zhao Y, An Z, Cheng M, Wang Q, Cheng T, et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg–Nd– Zn–Zr alloy. Biomaterials 2015;53:211–20. 链接1

[14] Niu J, Xiong M, Guan X, Zhang J, Huang H, Pei J, et al. The in vivo degradation and bone–implant interface of Mg–Nd–Zn–Zr alloy screws: 18 months postoperation results. Corros Sci 2016;113:183–7. 链接1

[15] Zhang J, Li H, Wang W, Huang H, Pei J, Qu H, et al. The degradation and transport mechanism of a Mg–Nd–Zn–Zr stent in rabbit common carotid artery: a 20-month study. Acta Biomater 2018;69:372–84. 链接1

[16] Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. CAD Comput Aided Des 2015;69:65–89. 链接1

[17] Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci 2018;93:45–111. 链接1

[18] Rotaru H, Schumacher R, Kim SG, Dinu C. Selective laser melted titanium implants: a new technique for the reconstruction of extensive zygomatic complex defects. Maxillofac Plast Reconstr Surg 2015;37(1):1. 链接1

[19] Van der Stok J, Van der Jagt OP, Yavari SA, De Haas MFP, Waarsing JH, Jahr H, et al. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J Orthop Res 2013;31(5):792–9. 链接1

[20] Yan C, Hao L, Hussein A, Young P, Raymont D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 2014;55:533–41. 链接1

[21] Kong D, Ni X, Dong C, Lei X, Zhang L, Man C, et al. Bio-functional and anticorrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater Des 2018;152:88–101. 链接1

[22] Manakari V, Parande G, Gupta M. Selective laser melting of magnesium and magnesium alloy powders: a review. Metals 2017;7(1):2. 链接1

[23] Wei K, Zeng X, Wang Z, Deng J, Liu M, Huang G, et al. Selective laser melting of Mg–Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property. Mater Sci Eng A 2019;756: 226–36. 链接1

[24] Zumdick NA, Jauer L, Kersting LC, Kutz TN, Schleifenbaum JH, Zander D. Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater Charact 2019;147:384–97. 链接1

[25] Gangireddy S, Gwalani B, Liu K, Faierson EJ, Mishra RS. Microstructure and mechanical behavior of an additive manufactured (AM) WE43–Mg alloy. Addit Manuf 2019;26:53–64. 链接1

[26] Bär F, Berger L, Jauer L, Kurtuldu G, Schäublin R, Schleifenbaum JH, et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomater 2019;98:36–49. 链接1

[27] Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater 2018;67: 378–92. 链接1

[28] Li Y, Jahr H, Zhang XY, Leeflang MA, Li W, Pouran B, et al. Biodegradationaffected fatigue behavior of additively manufactured porous magnesium. Addit Manuf 2019;28:299–311. 链接1

[29] Ng CC, Savalani MM, Man HC, Gibson I. Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys Prototyp 2010;5 (1):13–9. 链接1

[30] Neikov OD, Naboychenko SS, Murashova IV, Gopienko VG, Frishberg IV, Lotsko DV, editors. Handbook of non-ferrous metal powders: technology and applications. Amsterdam: Elsevier Science; 2009. 链接1

[31] Salehi M, Maleksaeedi S, Farnoush H, Sharon NML, Meenashisundaram GK, Gupta M. An investigation into interaction between magnesium powder and Ar gas: implications for selective laser melting of magnesium. Powder Technol 2018;333:252–61. 链接1

[32] Guo Y, Jia L, Kong B, Zhang S, Zhang F, Zhang H. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing. Appl Surf Sci 2017;409:367–74. 链接1

[33] Wei K, Gao M, Wang Z, Zeng X. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater Sci Eng A 2014;611:212–22. 链接1

[34] Andani MT, Dehghani R, Karamooz-Ravari MR, Mirzaeifar R, Ni J. A study on the effect of energy input on spatter particles creation during selective laser melting process. Addit Manuf 2018;20:33–43. 链接1

[35] Wei K, Zeng X, Wang Z, Deng J, Liu M, Huang G, et al. Selective laser melting of MgZn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property. Mater Sci Eng A 2019;756: 226–36. 链接1

[36] Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Reports 2014;80:1–36. 链接1

[37] Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 2001;46(6):559–632. 链接1

[38] Al-ketan O, Rowshan R, Abu Al-rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf 2018;19:167–83. 链接1

[39] Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H. Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012;2012:641430. 链接1

[40] Jia G, Chen C, Zhang J, Wang Y, Yue R, Luthringer-Feyerabend BJC, et al. In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering. Corros Sci 2018;144:301–12. 链接1

[41] Niu J, Yuan G, Liao Y, Mao L, Zhang J, Wang Y, et al. Enhanced biocorrosion resistance and biocompatibility of degradable Mg–Nd–Zn–Zr alloy by brushite coating. Mater Sci Eng C 2013;33(8):4833–41. 链接1

[42] Wang J, Witte F, Xi T, Zheng Y, Yang K, Yang Y, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater 2015;21:237–49. 链接1

[43] Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009;30(4):484–98. 链接1

[44] Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007;28(20):3074–82. 链接1

相关研究