期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第3期 doi: 10.1016/j.eng.2020.02.017

基于中国族群的个性化增材制造全膝关节置换假体设计

a Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
b Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
c Department of Orthopaedics and Traumatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
d Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau am Staffelsee 82418, Germany
e Institute for Biomechanic, Paracelsus Medical University Salzburg, Salzburg 5020, Austria

收稿日期: 2019-07-30 修回日期: 2019-12-18 录用日期: 2020-02-21 发布日期: 2020-09-05

下一篇 上一篇

摘要

目前市场上大多数全膝关节置换(TKR)假体是根据高加索人的体型设计的。大量研究表明,不同种族之间的人体解剖结构不同,中国的TKR患者与现有进口假体并不匹配。本研究测量了52名中国男性和女性的膝关节计算机断层扫描(CT)图像。通过定义参数和几何尺寸,进行相关性分析。从测量结果中识别出关键参数。测量膝关节详细几何形状的坐标数据。基于与所标识的关键参数相关的解剖坐标系统,生成了可变形的三维(3D)膝关节模型。然后根据分析结果设计假体,进行表面匹配分析、切骨分析和尸体试验,并将其与商业假体产品进行比较以验证我们的设计。本研究设计的股骨组件与两种商业器械相比,具有更高的准确性[均方根比(RMS PS)为(1.08 ± 0.20) mm],而切除的骨量最低(27 412 mm3)。这项研究为基于族群的患者特定的股骨假体设计提出了一种新方法。使用一个易于获取的尺寸[即上髁宽度(ECW)]作为输入,可以根据分析的测量数据设计特定患者的股骨假体,并通过增材制造(AM)方法进行制造。同时,在原始CT扫描数据中将重建的股骨表面与原股骨表面进行比较。在所有数据中,重建的股骨表面的平均RMS PS距离为(1.10 ± 0.18)mm,这与使用多个X射线照片作为输入数据的其他统计形状建模方法相当。目前市场上对基于中国族群人体测量的膝关节假体有很大需求。本研究基于中国族群人体测量学,设计出更适合中国患者的膝关节假体,并保留了更多的骨量,这是迈向个性化膝关节假体增材制造的重要一步。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Yue B, Varadarajan KM, Ai ST, Tang TT, Rubash HE, Li GA. Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 2011;26(1):124–30. 链接1

[ 2 ] Ho WP, Cheng CK, Liau JJ. Morphometrical measurements of resected surface of femurs in Chinese knees: correlation to the sizing of current femoral implants. Knee 2006;13(1):12–4. 链接1

[ 3 ] Uehara K, Kadoya Y, Kabayashi A, Ohashi H, Yamana Y. Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplasty 2002;17(8):1028–32. 链接1

[ 4 ] Lombardi AV Jr, Mallory TH, Waterman RA, Eberle RW. Intercondylar distal femoral fracture. An unreported complication of posterior-stabilized total knee arthroplasty. J Arthroplasty 1995;10:643–50. 链接1

[ 5 ] Liu Z, Yuan G, Zhang W, Shen Y, Deng L. Anthropometry of the proximal tibia of patients with knee arthritis in Shanghai. J Arthroplasty 2013;28(5):778–83. 链接1

[ 6 ] Editorial Board of Special Issue on Additive Manufacturing. Introduction to the special issue on additive manufacturing. Engineering 2017;3(5):576. 链接1

[ 7 ] Wang K, Ho CC, Zhang C, Wang B. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 2017;3(5):653–62. 链接1

[ 8 ] Ling K, Huang G, Liu J, Zhang X, Ma Y, Lu T, et al. Bioprinting-based highthroughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids. Engineering 2015;1(2):269–74. 链接1

[ 9 ] An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering 2015;1(2):261–8. 链接1

[10] Lu B, Li D, Tian X. Development trends in additive manufacturing and 3D printing. Engineering 2015;1(1):85–9. 链接1

[11] Lipperts M, van Laarhoven S, Senden R, Heyligers I, Grimm B. Clinical validation of a body-fixed 3D accelerometer and algorithm for activity monitoring in orthopaedic patients. J Orthop Translat 2017;11:19–29. 链接1

[12] Li L, Long J, Cao H, Tang T, Xi X, Qin L, et al. Quantitative determination of residual 1,4-dioxane in three-dimensional printed bone scaffold. J Orthop Translat 2018;13:58–67. 链接1

[13] Bosma SE, Wong KC, Paul L, Gerbers JG, Jutte PC. A cadaveric comparative study on the surgical accuracy of freehand, computer navigation, and patientspecific instruments in joint-preserving bone tumor resections. Sarcoma 2018;2018:4065846. 链接1

[14] Mok SW, Nizak R, Fu SC, Ho KWK, Qin L, Saris DBF, et al. From the printer: potential of three-dimensional printing for orthopaedic applications. J Orthop Translat 2016;6:42–9. 链接1

[15] Fang C, Cai H, Kuong E, Chui E, Siu YC, Ji T, et al. Surgical applications of threedimensional printing in the pelvis and acetabulum: from models and tools to implants. Unfallchirurg 2019;122(4):278–85. 链接1

[16] Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, et al. Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am 2005;87(S2):71–80. 链接1

[17] Eckhoff D, Hogan C, Dimatteo L, Robinson M, Bach J. Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop Relat Res 2007;461:238–44. 链接1

[18] Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 1993;286:40–7. 链接1

[19] Shi D. Biomechanical study on the application of newly defined posterior condylar axis in the kinematical alignment of varus knees [dissertation]. Hong Kong: The Chinese University of Hong Kong; 2015. 链接1

[20] Netter FH. Atlas of human anatomy. 6th ed. Philadelphia: Elsevier Saunders; 2014. 链接1

[21] Shao X. The manual of anthropometry. Shanghai: Shanghai Lexicographical Publishing House; 1985. 链接1

[22] Howell SM, Roth JD, Hull ML. Kinematic alignment in total knee arthroplasty definition, history, principle, surgical technique, and results of an alignment option for TKA. Arthropaedia 2014;1:44–53. 链接1

[23] Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, et al. Validation of a functional method for the estimation of hip joint centre location. J Biomech 1999;32(1):99–103. 链接1

[24] Inman VT. The joints of the ankle. Baltimore: Williams & Wilkins; 1976. 链接1

[25] Schneider A, Hommel G, Blettner M. Linear regression analysis—part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2010;107 (44):776–82. 链接1

[26] Zhu Z, Li G. Construction of 3D human distal femoral surface models using a 3D statistical deformable model. J Biomech 2011;44(13):2362–8. 链接1

[27] Zheng G, Schumann S. A system for 3-D reconstruction of a patient-specific surface model from calibrated X-ray images. Stud Health Technol Inform 2009;142:453–8. 链接1

[28] Zheng G, Schumann S. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated X-ray radiographs: a validation study. Med Phys 2009;36(4):1155–66. 链接1

[29] Tang TSY, Ellis RE. 2D/3D deformable registration using a hybrid atlas. In: Duncan JS, Gerig G, editors. Lecture notes in computer science. Proceedings of 8th International Conference on Medical Image Computing and ComputerAssisted Intervention; 2005 Oct 26–29; Palm Springs, CA, USA. Berlin: Springer-Verlag; 2005. p. 223–30. 链接1

[30] Lamecker H, Seebass M, Hege HC, Deuflhard PA. In: Image processing. Proceedings of the Medical Imaging 2004 Conference; 2004 Feb 17–19; San Diego, CA, USA. Bellingham: Spie-Int Soc Optical Engineering; 2004. p. 1341–51. 链接1

[31] Sadowsky O, Chintalapani G, Taylor RH. Deformable 2D-3D registration of the pelvis with a limited field of view, using shape statistics. In: Ayache, N, Ourdelin S, Maeder A, editors. Lecture notes in computer science. Proceedings of 10th International Conference on Medical Image Computing and ComputerAssisted Intervention; 2007 Oct 29–Nov 2; Brisbane, QLD, Australia. Berlin: Springer-Verlag; 2007. p. 519–26.

[32] Laporte S, Skalli W, de Guise JA, Lavaste F, Mitton D. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput Methods Biomech Biomed Eng 2003;6(1):1–6. 链接1

[33] Vignesh U, Mehrotra D, Howlader D, Singh PK, Gupta S. Patient specific threedimensional implant for reconstruction of complex mandibular defect. J Craniofac Surg 2019;30(4):E308–11. 链接1

[34] Tarsitano A, Badiali G, Pizzigallo A, Marchetti C. Orbital reconstruction: patient-specific orbital floor reconstruction using a mirroring technique and a customized titanium mesh. J Craniofac Surg 2016;27(7):1822–5. 链接1

[35] Du H, Tian X, Li T, Yang J, Li K, Pei G, et al. Use of patient-specific templates in hip resurfacing arthroplasty: experience from sixteen cases. Int Orthop 2013;37(5):777–82. 链接1

[36] Hitt K, Shurman JR, Greene K, McCarthy J, Moskal J, Hoeman T, et al. Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Am 2003;85(S4):115–22. 链接1

[37] Westrich GH, Agulnick MA, Laskin RS, Haas SB, Sculco TP. Current analysis of tibial coverage in total knee arthroplasty. Knee 1997;4(2):87–91. 链接1

[38] Hoaglund FT, Low WD. Anatomy of the femoral neck and head with comparative data from Caucasians and Hong Kong Chinese. Clin Orthop Relat Res 1980;152:10–6. 链接1

[39] Luke P, Allison R, Joseph L, Timothy W, Mark G, Geoffrey W. Reduction in bone volume resection with a newer posterior stabilized total knee arthroplasty design. HSS J 2013;9(2):157–60. 链接1

相关研究