期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第12期 doi: 10.1016/j.eng.2020.03.014

我国大气污染治理的进展与生态文明时代的机遇和挑战

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

收稿日期: 2019-12-27 修回日期: 2020-03-18 录用日期: 2020-03-26 发布日期: 2020-06-19

下一篇 上一篇

摘要

中国过去的经济增长在很大程度上依赖于化石燃料消费,因此造成了严重的空气污染问题。解决经济增长与污染改善之间的矛盾已成为我国发展生态文明的关键。本文分析了我国近30年来大气污染治理的历程,指明了从排放控制到质量管理这一战略转变的重要意义。“十一五”期间,二氧化硫(SO2)排放总量控制遏制了中国酸雨问题日益恶化的态势。2013年以来,我国制定了以降低细颗粒物(PM2.5)浓度为大气污染治理的主要目标,开展了针对多个行业、多种大气污染物的综合治理行动,标志着中国向以空气质量为导向的战略转变。针对目前日益加剧的臭氧(O3)污染,急需科学厘清PM2.5和O3污染控制之间复杂的相互作用关系,实施有效的污染协同控制策略。作为成功建设生态文明的关键性指标,中国空气质量的根本改善要求今后中国能源系统深度降碳,并且能够寻求更多的协同途径,从而同时改善空气质量和应对气候变化。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] World Bank Group. China overview 2017 [Internet]. Beijing: The World Bank in China; 2019 [cited 2020 Apr 23]. Available from: https://www.worldbank.org/ en/country/china/overview#1. 链接1

[ 2 ] British Petroleum. BP statistical review of world energy. London: British Petroleum Co.; 2018. 链接1

[ 3 ] Zheng C, Zhao C, Li Y, Wu X, Zhang K, Gao J, et al. Spatial and temporal distribution of NO2 and SO2 in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations. Atmos Environ 2018;188:50–9. 链接1

[ 4 ] Zhang K, Zhao C, Fan H, Yang Y, Sun Y. Toward understanding the differences of PM2.5 characteristics among five China urban cities. Asia-Pac J Atmos Sci 2019;5:1–10. 链接1

[ 5 ] Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 2018;18:14095–111. 链接1

[ 6 ] International Energy Agency. CO2 emissions from fuel combustion. Paris: International Energy Agency; 2019. 链接1

[ 7 ] Report on the state of the ecology and environment in China [Internet]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China; 2018 Aug 1 [cited 2020 Jun 8]. Available from: http://english.mee.gov.cn/Resources/ Reports/soe/SOEE2017/201808/P020180801597738742758.pdf. 链接1

[ 8 ] Larssen T, Lydersen E, Tang D, He Y, Gao J, Liu H, et al. Acid rain in China. Environ Sci Technol 2006;40(2):418–25. 链接1

[ 9 ] Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, et al. Sustainable development goals for people and planet. Nature 2013;495 (7441):305–7. 链接1

[10] China Meteorological Administration. Annual report of acid rain monitoring in China. Beijing: China Meteorological Administration; 2014. Chinese. 链接1

[11] Schwartz J, Dockery DW, Neas LM. Is daily mortality associated specifically with fine particles? J Air Waste Manage 1996;46(10):927–39. 链接1

[12] Identification of nonattainment classification and deadlines for submission of state implementation plan (SIP) provisions for the 1997 & 2006 fine particle National Ambient Air Quality Standards (NAAQS)—fact sheet [Internet]. Washington, DC: United States Environmental Protection Agency; [updated 2020 May 22; cited 2020 Jun 8]. Available from: https://www.epa.gov/sites/ production/files/2016-04/documents/20140428_factsheet_nonattainment. pdf. 链接1

[13] He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK, et al. The characteristics of PM2.5 in Beijing, China. Atmos Environ 2001;35(29):4959–70. 链接1

[14] Andersson A, Deng J, Du K, Zhang M, Yan C, Sköld M, et al. Regionally-varying combustion sources of the January 2013 severe haze events over eastern China. Environ Sci Technol 2015;49(4):2038–43. 链接1

[15] Ma Z, Hu X, Sayer AM, Levy R, Zhang Q, Xue Y, et al. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ Health Persp 2015;124(2):184–92. 链接1

[16] Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017;389(10082):1907–18. 链接1

[17] World Bank Group. The cost of air pollution. Washington, DC: World Bank Group; 2016. 链接1

[18] Standing Committee of the National People’s Congress. Law of the People’s Republic of China on the Prevention and Control of Atmospheric Pollution. (Sep 5, 1987). Chinese.

[19] Hao J, Wang S, Liu B, He K. Designation of acid rain and SO2 control zones and control policies in China. J Environ Sci Health A 2000;35(10):1901–14. 链接1

[20] Schreifels JJ, Fu Y, Wilson EJ. Sulfur dioxide control in China: policy evolution during the 10th and 11th Five-Year Plans and lessons for the future. Energy Policy 2012;48:779–89. 链接1

[21] Jin Y, Andersson H, Zhang S. Air pollution control policies in China: a retrospective and prospects. Int J Environ Res Pub Health 2016;13(12):1219. 链接1

[22] Ministry of Ecology and Environment of the People’s Republic of China. China environmental statistical bulletin 2010. Beijing: Ministry of Ecology and Environment of the People’s Republic of China; 2012. Chinese.

[23] Wang S, Zhang Q, Martin RV, Philip S, Liu F, Li M, et al. Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants. Environ Res Lett 2015;10(11):114015. 链接1

[24] De Foy B, Lu Z, Streets DG. Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the twelfth Five-Year Plan. Sci Rep 2016;6:35912. 链接1

[25] Yang F, Tan J, Zhao Q, Du Z, He K, Ma Y, et al. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos Chem Phys 2011;11 (11):5207–19. 链接1

[26] Zhao B, Wang SX, Liu H, Xu JY, Fu K, Klimont Z, et al. NOx emissions in China: historical trends and future perspectives. Atmos Chem Phys 2013;13 (19):9869–97. 链接1

[27] Liu X, Gao X, Wu X, Yu W, Chen L, Ni R, et al. Updated hourly emissions factors for Chinese power plants showing the impact of widespread ultralow emissions technology deployment. Environ Sci Technol 2019;53(5):2570–8. 链接1

[28] Ministry of Ecology and Environment of the People’s Republic of China. China environmental statistic bulletin 2015. Beijing: Ministry of Ecology and Environment of the People’s Republic of China; 2016. Chinese.

[29] Liu F, Zhang Q, Zheng B, Tong D, Yan L, Zheng Y, et al. Recent reduction in NOx emissions over China: synthesis of satellite observations and emission inventories. Environ Res Lett 2016;11(11):114002. 链接1

[30] Ding D, Xing J, Wang S, Liu K, Hao J. Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environ Health Perspect 2019;127(6):067009. 链接1

[31] Geng G, Zhang Q, Tong D, Li M, Zheng Y, Wang S, et al. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005–2012. Atmos Chem Phys 2017;17(14):9187–203. 链接1

[32] Zhang Q, Zheng Y, Tong D, Shao M, Wang S, Zhang Y, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc Natl Acad Sci USA 2019;116 (49):24463–9.

[33] Wang J, Zhao B, Wang S, Yang F, Xing J, Morawska L, et al. Particulate matter pollution over China and the effects of control policies. Sci Total Environ 2017;584–585:426–47. 链接1

[34] Zhao B, Wu W, Wang S, Xing J, Chang X, Liou KN, et al. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing– Tianjin–Hebei region. Atmos Chem Phys 2017;17(19):12031–50. 链接1

[35] Wang S, Zhao B,Wu Y, Hao J. Target andmeasures to prevent and control ambient fine particle pollution in China. China Environ Manage 2015;2:37–43. Chinese.

[36] Wang S, Xing J, Jang C, Zhu Y, Fu JS, Hao J. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ Sci Technol 2011;45(21):9293–300. 链接1

[37] Wang L, Wei Z, Yang J, Zhang Y, Zhang FF, Su J, et al. The 2013 severe haze over the southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmos Chem Phys 2013;13(11):28395–451. 链接1

[38] Xu Q, Wang S, Jiang J, Bhattarai N, Li X, Chang X, et al. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China. Sci Total Environ 2019;689:1293–303. 链接1

[39] Wang Y, Chen Y, Wu Z, Shang D, Bian Y, Du Z, et al. Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmos Chem Phys 2020;20(4):2161–75. 链接1

[40] Li H, Zhang Q, Zheng B, Chen C, Wu N, Guo H, et al. Nitrate-driven urban haze pollution during summertime over the North China Plain. Atmos Chem Phys 2018;18:5293–306. 链接1

[41] Wang S, Zhao M, Xing J, Wu Y, Zhou Y, Lei Y, et al. Quantifying the air pollutants emission reduction during the 2008 Olympic Games in Beijing. Environ Sci Technol 2010;44(7):2490–6. 链接1

[42] Beijing Municipal Ecology and Environment Bureau. Source apportionment results of PM2.5 in Beijing. Beijing: Beijing Municipal Ecology and Environment Bureau; 2014. Chinese.

[43] United Nations Environment Programme. A review of 20 years’ air pollution control in Beijing. Nairobi: United Nations Environment Programme; 2019.

[44] Wu Y, Zhang S, Hao J, Liu H, Wu X, Hu J, et al. On-road vehicle emissions and their control in China: a review and outlook. Environ Sci Technol 2017;574:332–49. 链接1

[45] Cheng J, Su J, Cui T, Li X, Dong X, Sun F, et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis. Atmos Chem Phys 2019;19(9):6125–46. 链接1

[46] Ministry of Ecology and Environment of the People’s Republic of China. China environmental statistic bulletin 2017. Beijing: Ministry of Ecology and Environment of the People’s Republic of China; 2018. Chinese.

[47] Tang G, Li X, Wang Y, Xin J. Surface ozone trend details and interpretations in Beijing, 2001–2006. Atmos Chem Phys 2009;9(22):8813–23. 链接1

[48] Gao W, Tie X, Xu J, Huang R, Mao X, Zhou G, et al. Long-term trend of O3 in a mega city (Shanghai), China: characteristics, causes, and interactions with precursors. Sci Total Environ 2017;603–4:425–33. 链接1

[49] Li J, Lu K, Lv W, Li J, Zhong L, Ou Y, et al. Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011. J Environ Sci 2014;26(1):23–36. 链接1

[50] Verstraeten WW, Neu JL, Williams JE, Bowman KW, Worden JR, Boersma KF. Rapid increases in tropospheric ozone production and export from China. Nature Geosci 2015;8:690–5. 链接1

[51] Malley CS, Henze DK, Kuylenstierna JCI, Vallack HW, Davila Y, Anenberg SC, et al. Updated global estimates of respiratory mortality in adults  30 years of age attributable to long-term ozone exposure. Environ Health Persp 2017;125 (8):087021. 链接1

[52] Tang G, Wang Y, Li X. Spatial–temporal variations in surface ozone in northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmos Chem Phys 2012;12(5):2757–76. 链接1

[53] Xing J, Wang SX, Jang C, Zhu Y, Hao JM. Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology. Atmos Chem Phys 2011;11(10):5027–44. 链接1

[54] Anger A, Dessens O, Xi F, Barker T, Wu R. China’s air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas. Ambio 2016;45(2):254–65. 链接1

[55] Wang N, Lyu X, Deng X, Huang X, Jiang F, Ding A. Aggravating O3 pollution due to NOx emission control in eastern China. Environ Sci Technol 2019;677:732–44. 链接1

[56] Xing J, Ding D, Wang S, Zhao B, Jiang C, Wu W, et al. Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing–Tianjin–Hebei region, China. Atmos Chem Phys 2018;18(11):7799–814. 链接1

[57] Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 2018;18(19):14095–111. 链接1

[58] Lou S, Liao H, Zhu B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates. Atmos Environ 2014;85(2):123–38. 链接1

[59] Tie X, Madronich S, Walters S, Edwards DP, Ginoux P, Mahowald N, et al. Assessment of the global impact of aerosols on tropospheric oxidants. J Geophys Res 2005;110(D3):204. 链接1

[60] Li K, Jacob DJ, Liao H, Shen L, Zhang Q, Bates KH. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc Natl Acad Sci USA 2019;116(2):422–7. 链接1

[61] Benas N, Mourtzanou E, Kouvarakis G, Baisc A, Mihalopoulos N, Vardavasa I. Surface ozone photolysis rate trends in the Eastern Mediterranean: modeling the effects of aerosols and total column ozone based on Terra MODIS data. Atmos Environ 2013;74:1–9. 链接1

[62] Wang J, Allen DJ, Pickering KE, Li Z, He H. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign. J Geophys Res 2016;121 (11):6534–54. 链接1

[63] Bian H, Han S, Tie X, Sun M, Liu A. Evidence of impact of aerosols on surface ozone concentration in Tianjin, China. Atmos Environ 2007;41(22):4672–81. 链接1

[64] Xing J, Mathur R, Pleim J, Hogrefe C, Gan CM, Wong DC, et al. Air pollution and climate response to aerosol direct radiative effects: a modeling study of decadal trends across the northern hemisphere. J Geophys Res 2016;120 (23):12221–36. 链接1

[65] Wang JD, Wang SX, Jiang JK, Ding A, Zheng M, Zhao B, et al. Impact of aerosol– meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environ Res Lett 2014;9(9):094002. 链接1

[66] Jacobson MZ. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res 2002;107(D19):1–22. 链接1

[67] Jacobson MZ. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J Geophys Res 2010;115(D14):209. 链接1

[68] Xing J, Mathur R, Pleim J, Hogrefe C, Gan CM, Wong DC, et al. Air pollution and climate response to aerosol direct radiative effects: a modeling study of decadal trends across the northern hemisphere. J Geophys Res 2015;120(23):12221–36. 链接1

[69] Xing J, Wang S, Zhao B, Wu W, Ding D, Jiang C, et al. Quantifying nonlinear multiregional contributions to ozone and fine particles using an updated response surface modeling technique. Environ Sci Technol 2017;51(20):11788–98. 链接1

[70] Oh I, Yoo WJ, Yoo Y. Impact and interactions of policies for mitigation of air pollutants and greenhouse gas emissions in Korea. Int J Environ Res Public Health 2019;16(7):1161. 链接1

[71] Ma Q, Cai S, Wang S, Zhao B, Martin RV, Brauer M, et al. Impact of coal burning on ambient PM2.5 pollution in China. Atmos Chem Phys 2017;17:4477–91. 链接1

[72] Ke W, Zhang S, Wu Y, Zhao B, Wang S, Hao J. Assessing the future vehicle fleet electrification: the impacts on regional and urban air quality. Environ Sci Technol 2016;51(2):1007–16. 链接1

[73] He X, Zhang S, Wu Y, Wallington TJ, Lu X, Tamor MA, et al. Economic and climate benefits of electric vehicles in China, the United States, and Germany. Environ Sci Technol 2019;53(18):11013–22. 链接1

[74] Liang X, Zhang S, Wu Y, Xing J, He X, Zhang KM, et al. Air quality and health benefits from fleet electrification in China. Nat Sustain 2019;2(10):962–71. 链接1

[75] Li H, Tan X, Guo J, Zhu K, Huang C. Study on an implementation scheme of synergistic emission reduction of CO2 and air pollutants in China’s steel industry. Sustainability 2019;11(2):352. 链接1

[76] Pan X, Chen W, Clarke LE, Wang L, Liu G. China’s energy system transformation towards the 2 C goal: implications of different effort-sharing principles. Energy Policy 2017;103:116–26. 链接1

[77] Millar RJ, Fuglestvedt JS, Friedlingstein P, Rogelj J, Grubb MJ, Matthews HD, et al. Emission budgets and pathways consistent with limiting warming to 1.5 C. Nat Geosci 2017;10:741–50. 链接1

[78] Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, et al. Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 2009;458:1158–62. 链接1

[79] Fiore AM, Naik V, Leibensperger EM. Air quality and climate connections. J Air Waste Manage 2015;65(6):645–85. 链接1

[80] Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque JF, Shindell DT, et al. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ Res Lett 2013;8(3):034005. 链接1

[81] Bloomer BJ, Stehr JW, Piety CA, Salawitch RJ, Dickerson RR. Observed relationships of ozone air pollution with temperature and emissions. Geophys Res Lett 2009;36(9):L09803. 链接1

[82] Rasmussen D, Fiore A, Naik V, Horowitza LW, McGinnisc SJ, Schultzd MG. Surface ozone-temperature relationships in the eastern US: a monthly climatology for evaluating chemistry-climate models. Atmos Environ 2012;47:142–53. 链接1

[83] Miller AJ, Nagatani RM, Tiao GC, Niu XF, Reinsel GC, Wuebbles DJ, et al. Comparisons of observed ozone and temperature trends in the lower stratosphere. Geophys Res Lett 1992;19(9):929–32. 链接1

[84] Rood RB, Douglass AR. Interpretation of ozone temperature correlations: 1. theory. J Geophys Res-Atmos 1985;90(D3):5733–43. 链接1

[85] Feng X, Lugovoy O, Qin H. Co-controlling CO2 and NOx emission in China’s cement industry: an optimal development pathway study. Adv Clim Change Res 2018;9(1):34–42. 链接1

[86] Mao X, Zeng A, Hu T, Zhou J, Xing Y, Liu S. Co-control of local air pollutants and CO2 in the Chinese iron and steel industry. Environ Sci Technol 2013;47 (21):12002–10. 链接1

[87] Zhou J, Mao XQ, Hu T, Zeng A, Xing YK, Corsettia G. Implications of the 11th and 12th Five-Year Plans for energy conservation and CO2 and air pollutants reduction: a case study from the city of Urumqi, China. J Clean Prod 2015;112:1767–77. 链接1

[88] Liu S, Xing J, Zhao B, Wang J, Wang S, Zhang X, et al. Understanding of aerosol– climate interactions in China: aerosol impacts on solar radiation, temperature, cloud, and precipitation and its changes under future climate and emission scenarios. Curr Pollut Rep 2019;5:36–51. 链接1

[89] Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. 链接1

[90] Liao H, Chang W, Yang Y. Climatic effects of air pollutants over China: a review. Adv Atmos Sci 2015;32(1):115–39. 链接1

[91] Shindell D, Faluvegi G. Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2009;2(4):294. 链接1

[92] Kaiser DP, Qian Y. Decreasing trends in sunshine duration over China for 1954–1998: indication of increased haze pollution? Geophys Res Lett 2002;29 (21):2042. 链接1

[93] Chen LX, Zhang B, Zhu WQ, Zhou XJ, Luo YF, Zhou ZJ, et al. Variation of atmospheric aerosol optical depth and its relationship with climate change in China east of 100 E over the last 50 years. Theor Appl Climatol 2009;96(1– 2):191–9. 链接1

相关研究