期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第12期 doi: 10.1016/j.eng.2020.04.016

可再生电能制氢路线的科研前沿、技术瓶颈和解决方案展望

a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia 
b Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom 
c National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China

收稿日期: 2019-08-06 修回日期: 2020-01-16 录用日期: 2020-04-10 发布日期: 2020-10-12

下一篇 上一篇

摘要

由于电转氢(power to hydrogen, P2H)技术工艺成熟,灵活性高,目前其工程验证项目较多,有效的技术数据和经济数据来源广泛,因此电转氢可以有效地解决可再生能源供给与市场需求之间的不平衡问题。利用现行的天然气管网对氢气运输并在运输终端生产高纯度的氢气产品是一种可行的方案。本文通过全面地分析电制氢的研究现状,指出现行技术难点和寻找技术突破点并提供有效的解决方案,同时也提出未来电转氢方向基础研究和工业示范的发展契机。现有研究结果表明,在天然气管道中添加10%左右的氢气对于天然气管道安全、寿命和用户设备的影响较小,甚至可以忽略不计,从而适当地延长已有的天然气管道的资产价值。在产业链下游通过膜、吸附或其他有效的技术来对富氢天然气(HENG)进行分离是获得高纯氢气的有效方法,其关键在于对高选择性的分离技术和高氢容量的新材料的研发。另外,文中指出膜-吸附耦合工艺从HENG中制高纯氢,电化学分离氢(氢泵)的规模化、可行性和能耗分析研究是重要的发展方向,而低温冷冻分离技术在液化天然气(LNG)为主要产品时才具有一定的可行性。本文还讨论了其他相关技术和操作难点以及发展机遇,如水源的重要性、副产物(氧气)的利用和技术本身对于环境的影响等。本文对于促进读者对电转氢技术的理解和氢能经济的发展具有重要的指导意义。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] Better energy, greater prosperity: achievable pathways to low-carbon energy systems [Internet]. Hawthorn: Energy Transitions Commission; 2017 Apr 25 [cited 2020 Mar 26]. Available from: https://apo.org.au/node/76074. 链接1

[ 2 ] World energy outlook 2018 [Internet]. Paris: International Energy Agency; 2018 Nov [cited 2020 Mar 26]. Available from: https://www.iea.org/ reports/world-energy-outlook-2018. 链接1

[ 3 ] World energy investment 2019 [Internet]. Paris: International Energy Agency; 2019 May [cited 2020 Mar 26]. Available from: https://www.iea. org/reports/world-energy-investment-2019. 链接1

[ 4 ] Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater 2017;16 (1):16–22. 链接1

[ 5 ] Hu G, Nicholas NJ, Smith KH, Mumford KA, Kentish SE, Stevens GW. Carbon dioxide absorption into promoted potassium carbonate solutions: a review. Int J Greenhouse Gas Control 2016;53:28–40. 链接1

[ 6 ] Chu S. Carbon capture and sequestration. Science 2009;325(5948):1599. 链接1

[ 7 ] Hu G. Novel promoters for carbon dioxide absorption in potassium carbonate solutions [dissertation]. Melbourne: The University of Melbourne; 2018. 链接1

[ 8 ] Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy. Int J Hydrogen Energy 2012;37(2):1184–203. 链接1

[ 9 ] Belsito E, Dewar A, Marten I. Global gas report 2018. Technical report. Boston: The Boston Consulting Group; 2018. 链接1

[10] Renewables 2018: analysis and forecasts to 2023 [Internet]. Paris: International Energy Agency; 2018 Oct [cited 2020 Mar 26]. Available from: https://www.iea.org/reports/renewables-2018. 链接1

[11] Linnemann J, Steinberger-Wilckens R. Realistic costs of wind-hydrogen vehicle fuel production. Int J Hydrogen Energy 2007;32(10–11):1492–9. 链接1

[12] Pecher A, Kofoed JP, editors. Handbook of ocean wave energy. Cham: Springer; 2017. 链接1

[13] Global energy statistical yearbook 2018 [Internet]. New York: Enerdata; 2018 [cited 2020 Mar 26]. Available from: https://yearbook.enerdata.net/ 2017/. 链接1

[14] Robinius M, Raje T, Nykamp S, Rott T, Müller M, Grube T, et al. Power-to-gas: electrolyzers as an alternative to network expansion—an example from a distribution system operator. Appl Energy 2018;210:182–97. 链接1

[15] Net installed electricity generation capacity in Germany in 2018 [Internet]. Freiburg: Fraunhofer institute for solar energy systems (ISE); 2019 Jan 4 [cited 2020 Mar 26]. Available from: https://www.ise.fraunhofer. de/content/dam/ise/en/documents/News/Stromerzeugung_2018_2_en.pdf. 链接1

[16] Recent electricity data: power generation and consumption [Internet]. Berlin: Agora Energiewende; 2020 Mar 26 [cited 2020 Mar 26]. Available from: https://www.agora-energiewende.de/en/service/recent-electricity-data/chart/ power_generation/30.03.2020/02.04.2020/. 链接1

[17] Maroufmashat A, Fowler M. Transition of future energy system infrastructure; through power-to-gas pathways. Energies 2017;10(8):1089. 链接1

[18] Pivovar B. 2017 H2@SCALE workshop report. Report. Golden: National Renewable Energy Laboratory; 2016. Report No.: HT12.IN53. 链接1

[19] Hydrogen storage [Internet]. Washington, DC: Office of Energy Efficiency and Renewable Energy; c2020 [cited 2020 Mar 26]. Available from: https://www. energy.gov/eere/fuelcells/hydrogen-storage. 链接1

[20] Pereira EG, da Silva JN, de Oliveira JL, Machado CS. Sustainable energy: a review of gasification technologies. Renewable Sustain Energy Rev 2012;16 (7):4753–62. 链接1

[21] Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable Sustain Energy Rev 2017;67:597–611. 链接1

[22] Fúnez Guerra C, Jaén Caparrós M, Nieto Calderón B, Sendarrubias Carbonero V, Nieto Gallego E, Reyes-Bozo L, et al. Viability analysis of centralized hydrogen generation plant for use in mobility sector. Int J Hydrogen Energy 2018;43(26):11793–802. 链接1

[23] Penev M, Melaina M, Bush B, Muratori M, Warner E, Chen Y. Low-carbon natural gas for transportation: well-to-wheels emissions and potential market assessment in California. Technical report. Golden: National Renewable Energy Laboratory; 2016. 链接1

[24] Wilberforce T, El-Hassan Z, Khatib FN, Al Makky A, Baroutaji A, Carton JG, et al. Developments of electric cars and fuel cell hydrogen electric cars. Int J Hydrogen Energy 2017;42(40):25695–734. 链接1

[25] cafcp.org [Internet]. West Sacramento: California fuel cell partnership; c2020 [cited 2020 Mar 26]. Available from: https://cafcp.org/. 链接1

[26] De Almeida LQ, Sales LCM, Sodré JR. Fuel consumption and emissions from a vehicle operating with ethanol, gasoline and hydrogen produced on-board. Int J Hydrogen Energy 2015;40(21):6988–94. 链接1

[27] Andrews J, Shabani B. Dimensionless analysis of the global techno-economic feasibility of solar-hydrogen systems for constant year-round power supply. Int J Hydrogen Energy 2012;37(1):6–18. 链接1

[28] Multi-year research, development and demonstration plan: 2016 fuel cells section [Internet]. Washington, DC: Fuel Cell Technologies Office; 2017 May [cited 2020 Sep 26]. Available from: https://www.energy.gov/sites/prod/files/ 2017/05/f34/fcto_myrdd_fuel_cells.pdf. 链接1

[29] Sinigaglia T, Lewiski F, Santos Martins ME, Mairesse Siluk JC. Production, storage, fuel stations of hydrogen and its utilization in automotive applications—a review. Int J Hydrogen Energy 2017;42(39):24597–611. 链接1

[30] hydrogeneurope.eu/ [Internet]. European Hydrogen and Fuel Cell Association; c2020 [cited 26 March 2020]. Available from: https://hydrogeneurope.eu/. 链接1

[31] Power to gas strategy platform [Internet]. Berlin: German Energy Agency; c2016 [cited 2020 Mar 26]. Available from: https://www.dena.de/en/topicsprojects/projects/energy-systems/power-to-gas-strategy-platform/. 链接1

[32] Vlap H, van der Steen A, Knijp J, Holstein J, Grond L. An overview of the technical assumptions and results of the power-to-gas demonstration project in Rozenburg, the Netherlands Technical report. Groningen: Det Norske Veritas (DNV) Germanischer Lloyd (GL) Oil & Gas; 2015. 链接1

[33] H2@Scale CRADA projects: 2018 annual progress report. Technical report. Washington, DC: US Department of Energy; 2018.

[34] Hydrogen and fuel cells program [Internet]. Washington, DC: US Department of Energy; c2020 [cited 2020 Mar 26]. Available from: https://www. hydrogen.energy.gov/. 链接1

[35] Palmer G. Australia’s hydrogen future: a research report Technical report. Canberra: Energy Transition Hub; 2018. 链接1

[36] Maniatopoulos P, Andrews J, Shabani B. Towards a sustainable strategy for road transportation in Australia: the potential contribution of hydrogen. Renew Sustain Energy Rev 2015;52:24–34. 链接1

[37] Penev M. Hybrid hydrogen energy storage [Internet]. Golden: National Renewable Energy Laboratory (NREL); 2013 May 22 [cited 2020 Mar 26]. Available from: http://www.h2fcsupergen.com/wp-content/uploads/2013/ 06/Hybrid-Hydrogen-Energy-Storage-Michael-Penev-National-Energy-ResearchLaboratory.pdf. 链接1

[38] Smolinka T. Water electrolysis: status and potential for development [Internet]. Freiburg: Fraunhoder Fraunhofer institute for solar energy systems (ISE); 2014 Mar 4 [cited 2020 Mar 26]. Available from: https:// www.fch.europa.eu/sites/default/files/2%20Water%20Electrolysis%20Status% 20and%20Potential%20for%20Development.pdf. 链接1

[39] Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrogen Energy 2017;42(52):30470–92. 链接1

[40] Lehner M, Tichler R, Steinmüller H, Koppe M. The power-to-gas concept. In: Lehner M, Tichler R, Steinmüller H, Koppe M, editors. Power-to-gas: technology and business models. Cham: Springer; 2014. p. 7–17. 链接1

[41] Waidhas M. Electrolyzer technology—the Siemens view [Internet]. Sandviken: Hydrogen and Fuel Cell (HFC) Nordic; 2016 Oct 26 [cited 2020 Mar 26]. Available from: http://www.scandinavianhydrogen.org/wp-content/ uploads/2016/11/2_Manfred-Waidhas.pdf. 链接1

[42] Otten R. The first industrial PtG plant—Audi e-gas as driver for the energy turnaround [Internet]. Bruxelles: Community Economic Development and Employability Corporation (CEDEC); 2014 May 27 [cited 2020 Mar 26]. Available from: http://www.cedec.com/files/default/8-2014-05-27-cedecgas-day-reinhard-otten-audi-ag.pdf. 链接1

[43] Felgenhauer M, Hamacher T. State-of-the-art of commercial electrolyzers and on-site hydrogen generation for logistic vehicles in South Carolina. Int J Hydrogen Energy 2015;40(5):2084–90. 链接1

[44] Sutherland E, Joseck F. DOE hydrogen and fuel cells program record (15011): low volume production and delivery cost [Internet]. Washington, DC: US Department of Energy; 2015 Aug 20 [cited 2020 Mar 26]. Available from: https://www.hydrogen.energy.gov/pdfs/15011_low_volume_production_ delivery_cost.pdf. 链接1

[45] Joseck F. Technology acceleration and hydrogen infrastructure R&D overview [Internet]. Washington, DC: US Department of Energy; 2018 [cited 2020 Mar 26]. Available from: https://www.hydrogen.energy.gov/pdfs/progress18/ tahi_overview_2018.pdf. 链接1

[46] Rustagi N, Elgowainy A, Vickers J. DOE hydrogen and fuel cells program pecord (18003): current status of hydrogen delivery and dispensing costs and pathways to future cost reductions [Internet]. Washington, DC: US Department of Energy; 2018 Dec 17 [cited 2020 Mar 26]. Available from: https://www.hydrogen.energy.gov/pdfs/18003_current_status_hydrogen_ delivery_dispensing_costs.pdf. 链接1

[47] Weil S, Dillich S, Joseck F, Ruth M. DOE hydrogen and fuel cells program pecord (12001): H2 production and delivery cost apportionment [Internet]. Washington, DC: US Department of Energy; 2012 Dec 14 [cited 2020 Mar 26]. Available from: https://www.hydrogen.energy.gov/pdfs/12001_h2_pd_cost_ apportionment.pdf. 链接1

[48] James B, Colella W, Moton J, Saur G, Ramsden T. PEM electrolysis H2A production case study documentation [Internet]. Washington, DC: US Department of Energy; 2013 Dec 31 [cited 2020 Mar 26]. Available from: https://www.nrel.gov/docs/fy15osti/61387.pdf. 链接1

[49] Zidar M, Georgilakis PS, Hatziargyriou ND, Capuder T, Škrlec D. Review of energy storage allocation in power distribution networks: applications, methods and future research. IET Gener Transm Distrib 2016;10(3):645–52. 链接1

[50] Doddathimmaiah A, Andrews J. Theory, modelling and performance measurement of unitised regenerative fuel cells. Int J Hydrogen Energy 2009;34(19):8157–70. 链接1

[51] Shabani B, Andrews J. An experimental investigation of a PEM fuel cell to supply both heat and power in a solar–hydrogen RAPS system. Int J Hydrogen Energy 2011;36(9):5442–52. 链接1

[52] De Falco M, Basile A, editors. Enriched methane: the first step towards the hydrogen economy. Cham: Springer; 2016. 链接1

[53] Chen C, Lu Y, Banares-Alcantara R. Direct and indirect electrification of chemical industry using methanol production as a case study. Appl Energy 2019;243:71–90. 链接1

[54] Marques Mota F, Kim DH. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem Soc Rev 2019;48(1):205–59. 链接1

[55] Morgan E, Manwell J, McGowan J. Wind-powered ammonia fuel production for remote islands: a case study. Renewable Energy 2014;72:51–61. 链接1

[56] Nayak-Luke R, Bañares-Alcántara R, Wilkinson I. ‘‘Green” ammonia: impact of renewable energy intermittency on plant sizing and levelised cost of ammonia. Ind Eng Chem Res 2018;57(43):14607–16. 链接1

[57] Van-Dal ES, Bouallou C. Design and simulation of a methanol production plant from CO2 hydrogenation. J Cleaner Prod 2013;57:38–45. 链接1

[58] Pérez-Fortes M, Schöneberger JC, Boulamanti A, Tzimas E. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 2016;161:718–32. 链接1

[59] Frontera P, Macario A, Ferraro M, Antonucci P. Supported catalysts for CO2 methanation: a review. Catalysts 2017;7(2):59. 链接1

[60] Modisha PM, Ouma CNM, Garidzirai R, Wasserscheid P, Bessarabov D. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels 2019;33(4):2778–96. 链接1

[61] Makepeace JW, He T, Weidenthaler C, Jensen TR, Chang F, Vegge T, et al. Reversible ammonia-based and liquid organic hydrogen carriers for highdensity hydrogen storage: recent progress. Int J Hydrogen Energy 2019;44 (15):7746–67. 链接1

[62] Zou YQ, von Wolff N, Anaby A, Xie Y, Milstein D. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nat Catal 2019;2:415–22. 链接1

[63] Shi L, Qi S, Qu J, Che T, Yi C, Yang B. Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier. Int J Hydrogen Energy 2019;44(11):5345–54. 链接1

[64] Dong Y, Yang M, Li L, Zhu T, Chen X, Cheng H. Study on reversible hydrogen uptake and release of 1,2-dimethylindole as a new liquid organic hydrogen carrier. Int J Hydrogen Energy 2019;44(10):4919–29. 链接1

[65] Wang G, Mitsos A, Marquardt W. Conceptual design of ammonia-based energy storage system: system design and time-invariant performance. AIChE J 2017;63(5):1620–37. 链接1

[66] Elgowainy A, Reddi K, Brown D. Hydrogen delivery infrastructure analysis Technical report. Chicago: Argonne National Laboratory; 2016. 链接1

[67] Demir ME, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios. Int J Hydrogen Energy 2018;43(22):10420–30. 链接1

[68] Florisson O. NATURALHY: assessing the potential of the existing natural gas network for hydrogen delivery. Brussels: GERG Academic Network Event; 2010. 链接1

[69] Van der Zwaan BCC, Schoots K, Rivera-Tinoco R, Verbong GPJ. The cost of pipelining climate change mitigation: an overview of the economics of CH4, CO2 and H2 transportation. Appl Energy 2011;88(11):3821–31. 链接1

[70] Dodds PE, Staffell I, Hawkes AD, Li F, Grünewald P, McDowall W, et al. Hydrogen and fuel cell technologies for heating: a review. Int J Hydrogen Energy 2015;40(5):2065–83. 链接1

[71] Ronevich J, Feng Z, Slifka A, Amaro R, Song EJ, Wang Y. Fatigue performance of high-strength pipeline steels and their welds in hydrogen gas service Technical report. Washington, DC: US Department of Energy; 2018. 链接1

[72] Bicer Y, Dincer I. Comparative life cycle assessment of hydrogen, methanol and electric vehicles from well to wheel. Int J Hydrogen Energy 2017;42 (6):3767–77. 链接1

[73] Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode. Int J Hydrogen Energy 2007;32(2):268–86. 链接1

[74] Schmura E, Klingenberg M. Existing natural gas pipeline materials and associated operational characteristics. Technical report. Washington, DC: US Department of Energy Hydrogen Program; 2005. 链接1

[75] Reitenbach V, Ganzer L, Albrecht D, Hagemann B. Influence of added hydrogen on underground gas storage: a review of key issues. Environ Earth Sci 2015;73:6927–37. 链接1

[76] Lu HT, Li W, Miandoab ES, Kanehashi S, Hu G. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review. Front Chem Sci Eng 2020. In press. 链接1

[77] Pinchbeck D, Huizing R. Preparing for the hydrogen economy by using the existing natural gas system as a catalyst (overview of the NATURALHYproject) [Internet]. Luxembour: The Community Research and Development Information Service (CORDIS); c2010 [cited 2020 Mar 26]. Available from: https://cordis.europa.eu/project/id/502661. 链接1

[78] Altfeld K, Pinchbeck D. Admissible hydrogen concentrations in natural gas systems. Gas Energy 2013;2103(3):1–2. 链接1

[79] Melaina MW, Antonia O, Penev M. Blending hydrogen into natural gas pipeline networks: a review of key issues Technical report. Golden: National Renewable Energy Laboratory; 2013. 链接1

[80] Dodds PE, Demoullin S. Conversion of the UK gas system to transport hydrogen. Int J Hydrogen Energy 2013;38(18):7189–200. 链接1

[81] Hydrogen to be trialled in NSW gas networks [Internet]. Canberra: Australian Renewable Energy Agency; 2018 Oct 22 [cited 2020 Mar 26]. Available from: https://arena.gov.au/news/hydrogen-to-be-trialled-in-nsw-gas-networks/. 链接1

[82] Isaac T. HyDeploy: the UK’s first hydrogen blending deployment project. Clean Energy 2019;3:114–25. 链接1

[83] Ibeh B, Gardner C, Ternan M. Separation of hydrogen from a hydrogen/ methane mixture using a PEM fuel cell. Int J Hydrogen Energy 2007;32 (7):908–14. 链接1

[84] Todd DM. Gas turbine improvements enhance IGCC viability. In: Proceedings of the 2000 Gasification Technologies Conference; 2000 Oct 8–11; San Francisco, CA, USA; 2020. 链接1

[85] Weeks B. Hydrogen delivery in the natural gas pipeline network [Internet]. Washington, DC: US Department of Energy’s Hydrogen Energy Storage for Grid and Transportation Service Workshop; 2014 May 14 [cited 2020 Sep 26]. Available from: https://www.energy.gov/sites/prod/files/2015/01/f19/fcto_ 2014_h2_energy_storage_grid_transportation_svcs_wkshp_weeks.pdf. 链接1

[86] Ockwig NW, Nenoff TM. Membranes for hydrogen separation. Chem Rev 2010;110(4):2573–4. 链接1

[87] Baker RW. Future directions of membrane gas separation technology. Ind Eng Chem Res 2002;41(6):1393–411. 链接1

[88] Ghosal K, Freeman BD. Gas separation using polymer membranes: an overview. Polym Adv Technol 1994;5(11):673–97. 链接1

[89] Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 2010;359(1– 2):126–39. 链接1

[90] Kentish SE, Scholes CA, Stevens GW. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat Chem Eng 2008;1(1):52–66. 链接1

[91] Koros WJ, Fleming GK. Membrane-based gas separation. J Membr Sci 1993;83 (1):1–80. 链接1

[92] Zornoza B, Casado C, Navajas A. Chapter 11—advances in hydrogen separation and purification with membrane technology. In: Gandía LM, Arzamendi G, Diéguez PM, editors. Renewable hydrogen technologies. Amsterdam: Elsevier; 2013. p. 245–68. 链接1

[93] Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, et al. Recent developments in membranes for efficient hydrogen purification. J Membr Sci 2015;495:130–68. 链接1

[94] Lubitz W, Tumas W. Hydrogen: an overview. Chem Rev 2007;107 (10):3900–3. 链接1

[95] Peters TA, Kaleta T, Stange M, Bredesen R. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. J Membr Sci 2011;383(1–2):124–34. 链接1

[96] Peters TA, Kaleta T, Stange M, Bredesen R. Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catal Today 2012;193(1):8–19. 链接1

[97] Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 1991;62(2):165–85. 链接1

[98] Robeson LM. The upper bound revisited. J Membr Sci 2008;320(1– 2):390–400. 链接1

[99] Kamakoti P, Morreale BD, Ciocco MV, Howard BH, Killmeyer RP, Cugini AV, et al. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science 2005;307(5709):569–73. 链接1

[100] Yun S, Ted OS. Correlations in palladium membranes for hydrogen separation: a review. J Membr Sci 2011;375(1–2):28–45. 链接1

[101] Shafie AH, An W, Hejazi SAH, Sawada JA, Kuznicki SM. Natural zeolite-based cement composite membranes for H2/CO2 separation. Sep Purif Technol 2012;88:24–8. 链接1

[102] Jiang DE, Cooper VR, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Lett 2009;9(12):4019–24. 链接1

[103] Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J Am Chem Soc 2010;132(44):15562–4. 链接1

[104] Zhang F, Zou X, Gao X, Fan S, Sun F, Ren H, et al. Hydrogen selective NH2-MIL53 (Al) MOF membranes with high permeability. Adv Funct Mater 2012;22 (17):3583–90. 链接1

[105] Esposito E, Mazzei I, Monteleone M, Fuoco A, Carta M, McKeown N, et al. Highly permeable Matrimid/PIM-EA (H2)-TB blend membrane for gas separation. Polymers 2019;11(1):46. 链接1

[106] McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 2006;35(8):675–83. 链接1

[107] Li FY, Xiao Y, Chung TS, Kawi S. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 2012;45(3):1427–37. 链接1

[108] Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Prog Polym Sci 2015;43:1–32. 链接1

[109] Zornoza B, Téllez C, Coronas J, Esekhile O, Koros WJ. Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases. AIChE J 2015;61(12):4481–90. 链接1

[110] Safak Boroglu M, Yumru AB. Gas separation performance of 6FDA-DAM-ZIF11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Sep Purif Technol 2017;173:269–79. 链接1

[111] Kim E, Kim H, Kim D, Kim J, Lee P. Preparation of mixed matrix membranes containing ZIF-8 and UiO-66 for multicomponent light gas separation. Crystals 2019;9(1):15. 链接1

[112] Weng TH, Tseng HH, Wey MY. Preparation and characterization of multiwalled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrogen Energy 2009;34(20):8707–15. 链接1

[113] Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, et al. Energyefficient polymeric gas separation membranes for a sustainable future: a review. Polymer 2013;54(18):4729–61. 链接1

[114] Stern SA, Mi Y, Yamamoto H, Clair AKS. Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures. J Polym Sci Pol Phys 1989;27(9):1887–909. 链接1

[115] Hayes RA, inventor; E. I. Du Pont de Nemours and Company, assignee. Polyimide gas separation membranes. United States patent US4705540. 1987 Nov 10.

[116] Min KE, Paul DR. Effect of tacticity on permeation properties of poly(methyl methacrylate). J Polym Sci Pol Phys 1988;26(5):1021–33. 链接1

[117] Macchione M, Jansen JC, De Luca G, Tocci E, Longeri M, Drioli E. Experimental analysis and simulation of the gas transport in dense Hyflon AD60X membranes: influence of residual solvent. Polymer 2007;48(9):2619–35. 链接1

[118] Takada K, Matsuya H, Masuda T, Higashimura T. Gas permeability of polyacetylenes carrying substituents. J Appl Polym Sci 1985;30 (4):1605–16. 链接1

[119] Toy LG, Nagai K, Freeman BD, Pinnau I, He Z, Masuda T, et al. Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2-[p- (trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules 2000;33 (7):2516–24. 链接1

[120] Nagai K, Higuchi A, Nakagawa T. Gas permeability and stability of poly(1- trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) membranes. J Polym Sci Pol Phys 1995;33(2):289–98. 链接1

[121] Yang L, Fang J, Meichin N, Tanaka K, Kita H, Okamoto K. Gas permeation properties of thianthrene-5,5,10,10-tetraoxide-containing polyimides. Polymer 2001;42(5):2021–9. 链接1

[122] Tanaka K, Okano M, Toshino H, Kita H, Okamoto KI. Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines. J Polym Sci Pol Phys 1992;30(8):907–14. 链接1

[123] Tanaka K, Islam MN, Kido M, Kita H, Okamoto KI. Gas permeation and separation properties of sulfonated polyimide membranes. Polymer 2006;47 (12):4370–7. 链接1

[124] Pinnau I, Toy LG. Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5- difluoro-1,3-dioxole/tetrafluoroethylene. J Membr Sci 1996;109(1):125–33. 链接1

[125] Koresh JE, Soffer A. The carbon molecular sieve membranes: general properties and the permeability of CH4/H2 mixture. Sep Purif Technol 1987;22:973–82. 链接1

[126] Hong M, Li S, Falconer JL, Noble RD. Hydrogen purification using a SAPO-34 membrane. J Membr Sci 2008;307(2):277–83. 链接1

[127] Cacho-Bailo F, Seoane B, Téllez C, Coronas J. ZIF-8 continuous membrane on porous polysulfone for hydrogen separation. J Membr Sci 2014;464:119–26. 链接1

[128] Basile A, Dalena F, Tong J, Veziroglu TN, editors. Hydrogen production, separation and purification for energy. London: The Institution of Engineering and Technology; 2017. 链接1

[129] Yang RT. Adsorbents: fundamentals and applications. Hoboken: John Wiley & Sons, Inc.; 2003. 链接1

[130] Sircar S. Production of hydrogen and ammonia synthesis gas by pressure swing adsorption. Sep Sci Technol 1990;25:1087–99. 链接1

[131] García-Pérez E, Gascón J, Morales-Flórez V, Castillo JM, Kapteijn F, Calero S. Identification of adsorption sites in Cu-BTC by experimentation and molecular simulation. Langmuir 2009;25(3):1725–31. 链接1

[132] Liu J, Keskin S, Sholl DS, Johnson JK. Molecular simulations and theoretical predictions for adsorption and diffusion of CH4/H2 and CO2/CH4 mixtures in ZIFs. J Phys Chem C 2011;115(25):12560–6. 链接1

[133] Guo HC, Shi F, Ma ZF, Liu XQ. Molecular simulation for adsorption and separation of CH4/H2 in zeolitic imidazolate frameworks. J Phys Chem C 2010;114(49):21891. 链接1

[134] Liu D, Lin YS, Li Z, Xi H. Adsorption and separation of CH4/H2 in MIL-101s by molecular simulation study. Chem Eng Sci 2013;98:246–54. 链接1

[135] Liu Y, Xiao S, Bai P, Hu H, Jin L. Adsorption separation performance of H2/CH4 on ETS-4 by concentration pulse chromatography. J Energy Chem 2014;23 (2):213–20. 链接1

[136] Casati C, Longhi P, Zanderighi L, Bianchi F. Some fundamental aspects in electrochemical hydrogen purification/compression. J Power Sources 2008;180(1):103–13. 链接1

[137] Iwahara H. Hydrogen pumps using proton-conducting ceramics and their applications. Solid State Ionics 1999;125(1–4):271–8. 链接1

[138] Wagner KK, Tiwari P, Swiegers GF, Wallace GG. An electrochemical cell with Gortex-based electrodes capable of extracting pure hydrogen from highly dilute hydrogen–methane mixtures. Energy Environ Sci 2018;11(1):172–84. 链接1

[139] Abdulla A, Laney K, Padilla M, Sundaresan S, Benziger J. Efficiency of hydrogen recovery from reformate with a polymer electrolyte hydrogen pump. AIChE J 2011;57(7):1767–79. 链接1

[140] Palazzo DF, Schreiner WC, inventors; Kellogg M W Co, assignee. Separation of hydrogen and methane. United States patent US3026683. 1962 Mar 27.

[141] Kim J, Maiti A, Lin LC, Stolaroff JK, Smit B, Aines RD. New materials for methane capture from dilute and medium-concentration sources. Nat Commun 2013;4:1694–701. 链接1

[142] Klamt A. COSMO-RS: from quantum chemistry to fluid phase thermodynamics. In: Friedl A, Klemeš JJ, Radl S, Varbanov PS, Wallek T, editors. Computer aided chemical engineering. Amsterdam: Elsevier; 2018. p. 9. 链接1

[143] Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 1995;99 (7):2224–35. 链接1

[144] Suzuki K, Sue H, Itou M, Smith RL, Inomata H, Arai K, et al. Isothermal vapor– liquid equilibrium data for binary systems at high pressures: carbon dioxide– methanol, carbon dioxide–ethanol, carbon dioxide–1-propanol, methane– ethanol, methane–1-propanol, ethane–ethanol, and ethane–1-propanol systems. J Chem Eng Data 1990;35(1):63–6. 链接1

[145] Ukai T, Kodama D, Miyazaki J, Kato M. Solubility of methane in alcohols and saturated density at 280.15 K. J Chem Eng Data 2002;47(5):1320–3. 链接1

[146] Trinh TKH, de Hemptinne JC, Lugo R, Ferrando N, Passarello JP. Hydrogen solubility in hydrocarbon and oxygenated organic compounds. J Chem Eng Data 2016;61(1):19–34. 链接1

[147] Ferrando N, Lachet V, Teuler JM, Boutin A. Transferable force field for alcohols and polyalcohols. J Phys Chem B 2009;113(17):5985–95. 链接1

[148] Ferrando N, Lachet V, Boutin A. Transferable force field for carboxylate esters: application to fatty acid methylic ester phase equilibria prediction. J Phys Chem B 2012;116(10):3239–48. 链接1

[149] Ferrando N, Lachet V, Boutin A. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation. J Phys Chem B 2010;114(26):8680–8. 链接1

[150] Ferrando N, Gedik I, Lachet V, Pigeon L, Lugo R. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations. J Phys Chem B 2013;117(23):7123–32. 链接1

[151] Ferrando N, Lachet V, Pérez-Pellitero J, MacKie AD, Malfreyt P, Boutin A. A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers. J Phys Chem B 2011;115(36):10654–64. 链接1

[152] Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J Pet Sci Eng 2012;94–95:123–54. 链接1

[153] Grashoff GJ, Pilkington CE, Corti CW. Purification of hydrogen. Platin Met Rev 1983;27(4):157–69. 链接1

[154] Rufford TE, Chan KI, Huang SH, May EF. A review of conventional and emerging process technologies for the recovery of helium from natural gas. Adsorpt Sci Technol 2014;32(1):49–72. 链接1

[155] Zhang F, Zhao P, Niu M, Maddy J. The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energy 2016;41(33):14535–52. 链接1

[156] Eslamimanesh A, Mohammadi AH, Richon D, Naidoo P, Ramjugernath D. Application of gas hydrate formation in separation processes: a review of experimental studies. J Chem Thermodyn 2012;46:62–71. 链接1

[157] Aceves SM, Petitpas G, Espinosa-Loza F, Matthews MJ, Ledesma-Orozco E. Safe, long range, inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels. Int J Hydrogen Energy 2013;38(5):2480–9. 链接1

[158] Hopkins JA, Dimartino SP, Nicholas DM, inventors; Air Products and Chemicals, Inc., assignee. Hybrid membrane/cryogenic process for hydrogen purification. United States patent US4654047. 1987 Mar 31.

[159] Bartolozzi I, Rizzi F, Frey M. Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 2013;101:103–11. 链接1

[160] Granovskii M, Dincer I, Rosen MA. Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrogen Energy 2006;31(3):337–52. 链接1

[161] Granovskii M, Dincer I, Rosen MA. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. J Power Sources 2006;159(2):1186–93. 链接1

[162] Hacatoglu K, Rosen MA, Dincer I. Comparative life cycle assessment of hydrogen and other selected fuels. Int J Hydrogen Energy 2012;37 (13):9933–40. 链接1

[163] Suleman F, Dincer I, Agelin-Chaab M. Environmental impact assessment and comparison of some hydrogen production options. Int J Hydrogen Energy 2015;40(21):6976–87. 链接1

[164] International Energy Agency. The future of hydrogen: seizing today’s opportunities Technical report. Paris: International Energy Agency; 2019. 链接1

[165] Yun S, Qin Y, Uhl AR, Vlachopoulos N, Yin M, Li D, et al. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ Sci 2018;11(3):476–526. 链接1

[166] Zhang H, An P, Zhou W, Guan BY, Zhang P, Dong J, et al. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv 2018;4(1):1–9. 链接1

[167] Abdulrahman MW, inventor; Abdulrahman MW, assignee. Direct contact heat transfer in the thermolysis reactor of hydrogen production Cu–Cl cycle. United States patent US20170015552. 2017 Jan 19.

[168] Marques JGO, Costa AL, Pereira C. Na–O–H thermochemical water splitting cycle: a new approach in hydrogen production based on sodium cooled fast reactor. Int J Hydrogen Energy 2018;43(16):7738–53. 链接1

[169] Wajda T, Gabriel K. Thermolysis reactor scale-up for pilot scale Cu-Cl hybrid hydrogen production. Int J Hydrogen Energy 2019;44(20):9779–90. 链接1

[170] Goldie-Scot L. A behind the scenes take on lithium-ion battery prices. London: BloomburgNEF; 2019 Mar 5 [cited 2020 Mar 26]. Available from: https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/. 链接1

相关研究