期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第12期 doi: 10.1016/j.eng.2020.05.004

用于提高叔胺的二氧化碳吸收能力的纳米多孔碳材料促进剂的制备

a Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
b Peter Cook Centre for CCS Research, The University of Melbourne, Parkville, VIC 3010, Australia
c School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia

收稿日期: 2020-01-13 修回日期: 2020-05-11 录用日期: 2020-05-11 发布日期: 2020-05-30

下一篇 上一篇

摘要

叔胺水溶液具有吸收力强、反应热低、腐蚀性低等特点,作为一种二氧化碳(CO2)吸收剂,其应用前景良好。然而,由于叔胺吸收CO2的速率过慢,不适用于大规模实际应用。本文对一些不同特性的纳米多孔碳材料促进剂(NCP)进行了合成和表征,并将其作为N,N-二乙基乙醇胺(DEEA)水溶液吸收CO2的加速剂。通过采用超声技术将NCP注入到3 mol·L–1的DEEA水溶液中,制备得 到了DEEA-NCP纳米流体。结果表明,在与乙二胺(EDA)、聚乙烯亚胺(PEI)发生官能化反应的微孔(GC)碳材料和介孔(GS)碳材料结构中,GC-EDA促进剂的性能最佳。对比DEEAGC-EDA纳米流体与典型的DEEA水溶液得出,GC-EDA促进剂在40℃时的CO2吸收率为36.8~50.7 kPa·min–1,提高了38.6%,平衡CO2吸收率为每摩尔DEEA中CO2的含量为0.69~0.78 mol(15 kPa; 40 ℃),提高了13.2%。此外,本文测定了DEEA-GC-EDA纳米流体的可再利用性,同时还提出了循环利用的方法。本文得出结论:在叔胺中加入NCP-GC-EDA促进剂可以提高CO2吸收率,同时还有利于实现叔胺的大规模使用,其前景广阔。 

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Alivand MS, Shafiei-Alavijeh M, Tehrani NHMH, Ghasemy E, Rashidi A, Fakhraie S. Facile and high-yield synthesis of improved MIL-101(Cr) metal– organic framework with exceptional CO2 and H2S uptake; the impact of excess ligand-cluster. Microporous Mesoporous Mater 2019;279:153–64. 链接1

[ 2 ] Zhang X, Zhu Z, Sun X, Yang J, Gao H, Huang Y, et al. Reducing energy penalty of CO2 capture using Fe promoted SO4 2/ZrO2/MCM-41 catalyst. Environ Sci Technol 2019;53(10):6094–102. 链接1

[ 3 ] Lai Q, Toan S, Assiri MA, Cheng H, Russell AG, Adidharma H, et al. CatalystTiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nat Commun 2018;9(1):1–7. 链接1

[ 4 ] Wang L, Liu S, Wang R, Li Q, Zhang S. Regulating phase separation behavior of a DEEATETA biphasic solvent using sulfolane for energy-saving CO2 capture. Environ Sci Technol 2019;53(21):12873–81. 链接1

[ 5 ] Alivand MS, Mazaheri O, Wu Y, Stevens GW, Scholes CA, Mumford KA. Development of aqueous-based phase change amino acid solvents for energyefficient CO2 capture: the role of antisolvent. Appl Energy 2019;256:113911. 链接1

[ 6 ] Gao H, Xu B, Liu H, Liang Z. Effect of amine activators on aqueous N,Ndiethylethanolamine solution for postcombustion CO2 capture. Energy Fuels 2016;30(9):7481–8. 链接1

[ 7 ] Wu Y, Alivand MS, Hu G, Stevens GW, Mumford KA. Nucleation kinetics of glycine promoted concentrated potassium carbonate solvents for carbon dioxide absorption. Chem Eng J 2020;381:122712. 链接1

[ 8 ] Tehrani NHMH, Alivand MS, Maklavany DM, Rashidi A, Samipoorgiri M, Seif A, et al. Novel asphaltene-derived nanoporous carbon with N-S-rich micromesoporous structure for superior gas adsorption: experimental and DFT study. Chem Eng J 2019;358:1126–38. 链接1

[ 9 ] Alivand MS, Farhadi F. Multi-objective optimization of a multi-layer PTSA for LNG production. J Nat Gas Sci Eng 2018;49:435–46. 链接1

[10] Alivand MS, Tehrani NHMH, Shafiei-Alavijeh M, Rashidi A, Kooti M, Pourreza A, et al. Synthesis of a modified HF-free MIL-101(Cr) nanoadsorbent with enhanced H2S/CH4, CO2/CH4, and CO2/N2 selectivity. J Environ Chem Eng 2019;7(2):102946. 链接1

[11] Miandoab ES, Kentish SE, Scholes CA. Non-ideal modelling of polymeric hollow-fibre membrane systems: pre-combustion CO2 capture case study. J Membrane Sci 2020;595:117470. 链接1

[12] Hosseini E, Stevens GW, Scholes CA. Membrane gas-solvent contactors undergoing oscillating solvent flow for enhanced carbon dioxide capture. Sep Purif Technol 2019;227:115653. 链接1

[13] Fronk BM, Garimella S. Condensation of carbon dioxide in microchannels. Int J Heat Mass Transfer 2016;100:150–64. 链接1

[14] Sun W, Cao X, Yang W, Jin X. Numerical simulation of CO2 condensation process from CH4–CO2 binary gas mixture in supersonic nozzles. Sep Purif Technol 2017;188:238–49. 链接1

[15] Bhatti UH, Nam S, Park S, Baek IH. Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration. ACS Sustainable Chem Eng 2018;6 (9):12079–87. 链接1

[16] Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renewable Energy 2018;118:527–35. 链接1

[17] Cui M, Chen S, Qi T, Zhang Y. Investigation of CO2 capture in nonaqueous ethylethanolamine solution mixed with porous solids. J Chem Eng Data 2018;63(5):1198–205. 链接1

[18] Song Y, Cao L, Yu J, Zhang S, Chen S, Jiang Y. Amino-functionalized graphene oxide blend with monoethanolamine for efficient carbon dioxide capture. J Alloy Compd 2017;704:245–53. 链接1

[19] Hafizi A, Mokari MH, Khalifeh R, Farsi M, Rahimpour MR. Improving the CO2 solubility in aqueous mixture of MDEA and different polyamine promoters: the effects of primary and secondary functional groups. J Mol Liq 2020;297:111803. 链接1

[20] Irani V, Tavasoli A, Vahidi M. Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption. J Colloid Interf Sci 2018;527:57–67. 链接1

[21] Vaidya PD, Kenig EY. Absorption of CO2 into aqueous blends of alkanolamines prepared from renewable resources. Chem Eng Sci 2007;62(24):7344–50. 链接1

[22] Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind Eng Chem Res 2013;52(24):8323–31. 链接1

[23] Chowdhury FA, Okabe H, Shimizu S, Onoda M, Fujioka Y. Development of novel tertiary amine absorbents for CO2 capture. Energy Procedia 2009;1(1): 1241–8. 链接1

[24] Rahmatmand B, Keshavarz P, Ayatollahi S. Study of absorption enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 nanoparticles in water and amine solutions. J Chem Eng Data 2016;61(4):1378–87. 链接1

[25] Komati S, Suresh AK. CO2 absorption into amine solutions: a novel strategy for intensification based on the addition of ferrofluids. J Chem Technol Biotechnol 2008;83(8):1094–100. 链接1

[26] Maleki A, Irani V, Tavasoli A, Vahidi M. Enhancement of CO2 solubility in a mixture of 40 wt% aqueous n-methyldiethanolamine solution and diethylenetriamine functionalized graphene oxide. J Nat Gas Sci Eng 2018;55:219–34. 链接1

[27] Alivand MS, Mazaheri O, Wu Y, Stevens GW, Scholes CA, Mumford KA. Data in brief on CO2 absorption–desorption of aqueous-based amino acid solvents with phase change behaviour. Data Brief 2019;27:104741. 链接1

[28] Tehrani NHMH, Alivand MS, Rashidi A, Shamskar KR, Samipoorgiri M, Esrafili MD, et al. Preparation and characterization of a new waste-derived mesoporous carbon structure for ultrahigh adsorption of benzene and toluene at ambient conditions. J Hazard Mater 2020;384:121317. 链接1

[29] Alivand MS, Najmi M, Tehrani NHMH, Kamali A, Tavakoli O, Rashidi A, et al. Tuning the surface chemistry and porosity of waste-derived nanoporous materials toward exceptional performance in antibiotic adsorption: experimental and DFT studies. Chem Eng J 2019;374:274–91. 链接1

[30] Babu CM, Binnemans K, Roosen J. Ethylenediaminetriacetic acidfunctionalized activated carbon for the adsorption of rare earths from aqueous solutions. Ind Eng Chem Res 2018;57(5):1487–97. 链接1

[31] Shin YR, Jeon IY, Baek JB. Stability of multi-walled carbon nanotubes in commonly used acidic media. Carbon 2012;50(4):1465–76. 链接1

[32] Li S, Amat D, Peng Z, Vanni S, Raskin S, De Angulo G, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale 2016;8(37):16662–9. 链接1

[33] Thiruselvi T, Thirupathi KRS, Aravindhan R, Shanuja SK, Gnanamani A. Handling and managing bleeding wounds using tissue adhesive hydrogel: a comparative assessment on two different hydrogels. RSC Adv 2016;6 (24):19973–81. 链接1

[34] De Sousa M, Martins CHZ, Franqui LS, Fonseca LC, Delite FS, Lanzoni EM, et al. Covalent functionalization of graphene oxide with D-mannose: evaluating the hemolytic effect and protein corona formation. J Mater Chem B 2018;6 (18):2803–12. 链接1

[35] You YZ, Yan JJ, Yu ZQ, Cui MM, Hong CY, Qu BJ. Multi-responsive carbon nanotube gel prepared via ultrasound-induced assembly. J Mater Chem 2009;19(41):7656–60. 链接1

[36] Yue YN, Meng WJ, Liu L, Hu QL, Wang H, Lu JX. Amino acid-functionalized multi-walled carbon nanotubes: a metal-free chiral catalyst for the asymmetric electroreduction of aromatic ketones. Electrochim Acta 2018;260:606–13. 链接1

[37] Rosca ID, Watari F, Uo M, Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 2005;43(15):3124–31. 链接1

[38] Arshadi M, Taghvaei H, Abdolmaleki MK, Lee M, Eskandarloo H, Abbaspourrad A. Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent. Appl Energy 2019;242:1562–72. 链接1

[39] Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S. Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 2007;19(23):5765–72. 链接1

[40] Dharmalingam S, Park KT, Lee JY, Park IG, Jeong SK. Catalytic effect of metal oxides on CO2 absorption in an aqueous potassium salt of lysine. J Ind Eng Chem 2018;68:335–41. 链接1

[41] Mohsin HM, Johari K, Shariff AM. Virgin coconut oil (VCO) and potassium glycinate (PG) mixture as absorbent for carbon dioxide capture. Fuel 2018;232:454–62. 链接1

相关研究