期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第8期 doi: 10.1016/j.eng.2020.05.008

联合卫星重力、卫星测高及陆地重力异常构建高分辨率地球重力场模型SGG-UGM-2

a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
b Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China
c School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China

收稿日期: 2019-05-16 修回日期: 2020-01-20 录用日期: 2020-05-26 发布日期: 2020-06-10

下一篇 上一篇

摘要

本文采用椭球谐分析方法构建了一个新的2190阶地球重力场模型SGG-UGM-2,使用的数据包括卫星重力观测数据[重力场与海洋环流探测卫星(Gravity Field and Steady-State Ocean Circulation Explorer, GOCE)和重力场与气候实验卫星(Gravity Recovery and Climate Experiment, GRACE)]、卫星测高数据和EGM2008 (Earth Gravitational Model 2008)模型重力异常数据。首先,基于椭球谐分析和系数转换方法(ellipsoidal harmonic analysis and coefficient transformation, EHA-CT),推导了适用于点值和均值重力异常的一套严密积分公式和最小二乘计算公式,改正了Rapp和Pavlis 1990年积分公式中的错误,并通过数值模拟试验证明了本文推导公式的严密性。然后,使用GOCE、GRACE、多代卫星测高数据和EGM2008重力异常数据计算了2190阶2159次的重力场模型SGGUGM-2,其中251阶到2190阶2159次模型系数是用全球地面重力异常数据集(包含海洋重力数据)采用块对角最小二乘方法解算,而2~250阶系数是联合卫星(GRACE和GOCE)和地面重力异常法方程采用严格最小二乘法计算,并采用方差分量估计方法确定不同观测数据的相对权。最后,使用中国和美国区域的全球定位系统(global positioning system, GPS)/水准数据对模型进行了检核。结果表明,SGG-UGM-2与国际权威模型EIGEN-6C4的精度相当,在中国的精度明显优于EGM2008,整体精度优于GECO模型,与SGG-UGM-1模型相比,其精度在中国和美国均有提升。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Hofmann-Wellenhof B, Moritz H. Physical geodesy. 2nd ed. Wien: Springer Science & Business Media; 2006. 链接1

[ 2 ] Featherstone WE. GNSS-based heighting in Australia: current, emerging and future issues. J Spat Sci 2008;53(2):115–33. 链接1

[ 3 ] Rummel R. Global unification of height systems and GOCE. In: Sideris MG, editor. Gravity, geoid and geodynamics 2000. Berlin: Springer; 2002. p. 13–20. 链接1

[ 4 ] Knudsen P, Bingham R, Andersen O, Rio MH. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 2011;85(11):861–79. 链接1

[ 5 ] McKenzie D, Yi W, Rummel R. Estimates of Te from GOCE data. Earth Planet Sci Lett 2014;399:116–27. 链接1

[ 6 ] Reigber C, Lühr H, Schwintzer P. CHAMP mission status. Adv Space Res 2002;30 (2):129–34. 链接1

[ 7 ] Tapley BD, Bettadpur S, Watkins M, Reigber C. The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 2004;31(9):L09607. 链接1

[ 8 ] Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A. GOCE: ESA’s first Earth explorer core mission. In: Beutler G, Rummel R, Drinkwater MR, von Steiger R, editors. Earth gravity field from space—from sensors to Earth science. Dordrecht: Kluwer Academic Publishers; 2003. p. 419–32. 链接1

[ 9 ] Reigber C, Jochmann H, Wünsch J, Neumayer KH, Schwintzer P. First insight into temporal gravity variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, editors. First CHAMP mission results for gravity, magnetic and atmospheric studies. New York: Springer; 2003. p. 128–33. 链接1

[10] Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, et al. GGM02: an improved Earth gravity field model from GRACE. J Geod 2005;79(8):467–78. 链接1

[11] Rummel R, Yi W, Stummer C. GOCE gravitational gradiometry. J Geod 2011;85 (11):777. 链接1

[12] Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, et al. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGENGL04C. J Geod 2008;82(6):331–46. 链接1

[13] Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, et al. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 2010;37(20):L20314. 链接1

[14] Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk KH. ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner FM, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, editors. System Earth via geodetic-geophysical space techniques. Heidelberg: Springer; 2010. p. 159–68. 链接1

[15] Jäggi A, Beutler G, Meyer U, Prange L, Dach R, Mervart L. AIUB-GRACE02S: status of GRACE gravity field recovery using the celestial mechanics approach. In: Kenyon S, Pacino MC, Marti U, editors. Geodesy for planet Earth. Heidelberg: Springer; 2012. p. 161–9. 链接1

[16] Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, et al. EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 2014;41(22):8089–99. 链接1

[17] Hirt C, Claessens SJ, Fecher T, Kuhn M, Pail R, Rexer M. New ultrahighresolution picture of Earth’s gravity field. Geophys Res Lett 2013;40 (16):4279–83. 链接1

[18] Pavlis NK, Holmes SA, Kenyon SC, Factor JK. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 2012;117 (B4):B04406. 链接1

[19] Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R. EIGEN-6C4: the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. 2014 [cited 2019 Mar 15]. GFZ Data Services. Available from: http://dataservices.gfz-potsdam.de/icgem/showshort.php?id= escidoc:1119897.

[20] Gilardoni M, Reguzzoni M, Sampietro D. GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud Geophys Geod 2016;60 (2):228–47. 链接1

[21] Fecher T, Pail R, Gruber T. GOCO Consortium. GOCO05c: a new combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys 2017;38(3):571–90. 链接1

[22] Pail R, Fecher T, Barnes D, Factor JF, Holmes SA, Gruber T, et al. Short note: the experimental geopotential model XGM2016. J Geod 2018;92(4):443–51. 链接1

[23] Liang W, Xu X, Li J, Zhu G. The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data. Acta Geod Cartographica Sin 2018;47(4):425–34. Chinese. 链接1

[24] Xu X, Zhao Y, Reubelt T, Tenzer R. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geod Geodyn 2017;8 (4):260–72. 链接1

[25] Rapp RH, Wang YM, Pavlis NK. The Ohio state 1991 geopotential and sea surface topography harmonic coefficient models. Technical report. Columbus: The Ohio State University; 1991. 链接1

[26] Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, et al. The development of the joint NASA GSFC and the national imagery and mapping agency (NIMA) geopotential model EGM96. Technical report. Washington, DC: NASA Goddard Space Flight Center; 1998. 链接1

[27] Holmes SA, Pavlis NK. Some aspects of harmonic analysis of data gridded on the ellipsoid. In: Proceedings of the 1st International Symposium of the International Gravity Field Service; 2006 Aug 28–Sep 1; Istanbul, Turkey. p. 151–6. 链接1

[28] Hotine M. Mathematical geodesy, ESSA, US. Washington, DC: US Department of Commerce; 1969. 链接1

[29] Jekeli C. The downward continuation to the Earth’s surface of truncated spherical and ellipsoidal harmonic series of the gravity and height anomalies [dissertation]. Columbus: The Ohio State University; 1981. 链接1

[30] Jekeli C. The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscr Geod 1988;13(2):106–13. 链接1

[31] Gleason DM. Comparing ellipsoidal corrections to the transformation between the geopotential’s spherical and ellipsoidal spectrums. Manuscr Geod 1988;13 (2):114–29. 链接1

[32] Sebera J, Bouman J, Bosch W. On computing ellipsoidal harmonics using Jekeli’s renormalization. J Geod 2012;86(9):713–26. 链接1

[33] Rapp RH, Pavlis NK. The development and analysis of geopotential coefficient models to spherical harmonic degree 360. J Geophys Res 1990;95 (B13):21885–911. 链接1

[34] Lu Y, Hsu HT, Jiang FZ. The regional geopotential model to degree and order 720 in China. In: Schwarz KP, editor. Geodesy beyond 2000. Heidelberg: Springer; 2000. p. 143–8. 链接1

[35] Huang MT, Zhai GJ, Ouyang YZ, Lu XP, Xu GX, Wang KP. Analysis and computation of ultrahigh degree geopotential model. Acta Geod Cartographica Sin 2001;30(3):208–13. Chinese. 链接1

[36] Driscoll JR, Healy DM. Computing Fourier transforms and convolutions on the 2-sphere. Adv Appl Math 1994;15(2):202–50. 链接1

[37] Cruz JY. Ellipsoidal corrections to potential coefficients obtained from gravity anomaly data on the ellipsoid. Technical report. Columbus: The Ohio State University; 1986. 链接1

[38] Sjöberg LE. Ellipsoidal corrections to order e2 of geopotential coefficients and Stokes’ formula. J Geod 2003;77(3–4):139–47. 链接1

[39] Petrovskaya MS, Vershkov AN, Pavlis NK. New analytical and numerical approaches for geopotential modeling. J Geod 2001;75(12):661–72. 链接1

[40] Claessens SJ. Solutions to ellipsoidal boundary value problems for gravity field modelling [dissertation]. Perth: Curtin University; 2006. 链接1

[41] Claessens SJ. Spherical harmonic analysis of a harmonic function given on a spheroid. Geophys J Int 2016;206(1):142–51. 链接1

[42] Claessens SJ, Hirt C. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid. J Geod 2015;89(10):1035–48. 链接1

[43] Rexer M, Hirt C, Pail R, Claessens S. Evaluation of the third- and fourthgeneration GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics. J Geod 2014;88(4):319–33. 链接1

[44] Sandwell DT, Smith WHF. Marine gravity anomaly from Geosat and ERS1 satellite altimetry. J Geophys Res 1997;102(B5):10039–54. 链接1

[45] Zhang S, Sandwell DT, Jin T, Li D. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. J Appl Geophys 2017;137:128–37. 链接1

[46] Andersen OB, Knudsen P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 1998;103(C4):8129–37. 链接1

[47] Hwang C. Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea. J Geod 1998;72(5):304–12. 链接1

[48] Kvas A, Behzadpour S, Ellmer M, Klinger B, Strasser S, Zehentner N, et al. ITSGGrace2018: overview and evaluation of a new GRACE-only gravity field time series. J Geophys Res 2019;124(8):9332–44. 链接1

[49] Colombo OL. Numerical methods for harmonic analysis on the sphere. Technical report. Columbus: The Ohio State University; 1981. 链接1

[50] Sneeuw N. Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective. Geophys J Int 1994;118 (3):707–16. 链接1

[51] Hirt C, Featherstone WE, Claessens SJ. On the accurate numerical evaluation of geodetic convolution integrals. J Geod 2011;85(8):519–38. 链接1

[52] Liang W, Li JC, Xu XY, Zhao YQ. Analysis of the impact on the gravity field determination from the data with the ununiform noise distribution using block-diagonal least squares method. Geod Geodyn 2016;7(3):194–201. 链接1

[53] Koch KR, Kusche J. Regularization of geopotential determination from satellite data by variance components. J Geod 2002;76(5):259–68. 链接1

[54] Meyer U, Jean Y, Kvas A, Dahle Ch, Lemoine JM, Jäggi A. Combination of GRACE monthly gravity fields on the normal equation level. J Geod 2019;93 (9):1645–58. 链接1

[55] Jean Y, Meyer U, Jäggi A. Combination of GRACE monthly gravity field solutions from different processing strategies. J Geod 2018;92(11):1313–28. 链接1

[56] Moritz H. Geodetic reference system 1980. Bull Géod 1980;54(3):395–405. 链接1

[57] Chapman B, Jost G, van der Pas R. Using openMP: portable shared memory parallel programming. London: The MIT Press; 2008. 链接1

[58] Gruber T, Rummel R, Abrikosov O, van Hees R, editors. GOCE level 2 product data handbook. Technical report. The European GOCE Gravity Consortium; 2010. 链接1

[59] Schuh WD. Improved modelling of SGG-data sets by advanced filter strategies. Final report. Noordwijk: ESA; 2002. p. 113–81.

[60] Fuchs MJ, Bouman J. Rotation of GOCE gravity gradients to local frames. Geophys J Int 2011;187(2):743–53. 链接1

[61] Reubelt T, Austen G, Grafarend EW. Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geod 2003;77(5– 6):257–78. 链接1

[62] Baur O, Reubelt T, Weigelt M, Roth M, Sneeuw N. GOCE orbit analysis: longwavelength gravity field determination using the acceleration approach. Adv Space Res 2012;50(3):385–96. 链接1

[63] IERS. SINEX format [Internet]. Frankfurt: IERS; 2005. Available from: https:// www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex. html.

[64] Olgiati A, Balmino G, Sarrailh M, Green CM. Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical. Bull Geod 1995;69(4):252–60. 链接1

[65] Holmes SA, Featherstone WE. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geod 2002;76(5):279–99. 链接1

[66] Li JC, Jiang WP, Zou XC, Xu XY, Shen WB. Evaluation of recent GRACE and GOCE satellite gravity models and combined models using GPS/leveling and gravity data in China. In: Proceedings of the IAG Symposium GGHS2012; 2012 Oct 9– 12; Venice, Italy. Heidelberg: Springer; 2014. p. 67–74. 链接1

[67] Milbert DG. Documentation for the GPS benchmark data set of 23-July-98. IGeS Bull 1998;8:29–42. 链接1

[68] Chen JY. Tide correction should be scientifically defined in the geodetic data processing. Geomat Inf Sci Wuhan Univ 2003;28(6):633–5. Chinese. 链接1

[69] He L, Chu YH, Xu XY, Zhang TX. Evaluation of the GRACE/GOCE global geopotential model on estimation of the geopotential value for the China vertical datum of 1985. Chin J Geophys 2019;62(6):2016–26. Chinese. 链接1

[70] Webster R, Oliver MA. Geostatistics for environmental scientists. 2nd ed. Chichester: John Wiley & Sons Ltd.; 2007. 链接1

[71] Bachmaier M, Backes M. Variogram or semivariogram? Variance or semivariance? Allan variance or introducing a new term? Math Geosci 2011;43(6):735–40. 链接1

[72] Slobbe C, Klees R, Farahani HH, Huisman L, Alberts B, Voet P, et al. The impact of noise in a GRACE/GOCE global gravity model on a local. J Geophys Res Sol Ea. In press.

相关研究