期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第4期 doi: 10.1016/j.eng.2020.05.020

堆积床相变储热系统中径向孔隙率振荡分布对热性能的影响

Institute of Engineering Thermo-Physics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

收稿日期: 2019-12-04 修回日期: 2020-05-01 录用日期: 2020-05-05 发布日期: 2020-09-22

下一篇 上一篇

摘要

由于具有较高的储热能力和传热速率,堆积床相变储热被认为是一种很有潜力的储热方法。在堆积床中,壁面效应会影响相变胶囊的填充结构,从而引起径向孔隙率的振荡。本研究建立了一个基于球体实际堆积过程的三维堆积床相变储热模型,以描述径向孔隙率的振荡分布,并分析了其内部的流动和传热情况。通过在堆积床中沿径向不同位置截取圆柱面,揭示了相变胶囊的排列与径向孔隙率之间的对应关系。径向孔隙率的振荡分布导致换热流体速度呈不均匀分布,因此相变材料的径向温度分布和液相分数分布进一步受到影响。此外,本文讨论了不同的无量纲参数(如管与胶囊的直径比、雷诺数和史蒂芬数)对换热流体和相变材料径向特性的影响。结果表明,不同的直径比对应于不同的径向孔隙率分布。此外,随着直径比的增加,在壁面附近区域换热流体速度显著变化,而中心区域换热流体速度的不均匀性将减小。雷诺数和史蒂芬数对换热流体的相对速度分布有轻微影响,而更高的雷诺数可导致速度成比例地提高,史蒂芬数的增加可加快堆积床相变储热系统的储热过程。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Lewis NS. Research opportunities to advance solar energy utilization. Science 2016;351(6271):aad1920. 链接1

[ 2 ] Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH. Solar energy: potential and future prospects. Renew Sustain Energy Rev 2018;82:894–900. 链接1

[ 3 ] Ren21 [Internet]. Renewables 2019 global status report. Paris: REN21; 2019 [cited 2020 May 8]. Available from: http://www.ren21.net/gsr-2019/.

[ 4 ] Zhao Y, You Y, Liu HB, Zhao CY, Xu ZG. Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process. Energy 2018;157:690–706. 链接1

[ 5 ] Sciacovelli A, Gagliardi F, Verda V. Maximization of performance of a PCM latent heat storage system with innovative fins. Appl Energy 2015;137:707–15. 链接1

[ 6 ] Zhang HL, Baeyens J, Caceres G, Degreve J, Lv YQ. Thermal energy storage: recent developments and practical aspects. Pror Energy Combust Sci 2016;53:1–40. 链接1

[ 7 ] Li MJ, Jin B, Ma Z, Yuan F. Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material. Appl Energy 2018;221:1–15. 链接1

[ 8 ] Das S, Deen NG, Kuipers JAM. A DNS study of flow and heat transfer through slender fixed-bed reactors randomly packed with spherical particles. Chem Eng Sci 2017;160:1–19. 链接1

[ 9 ] Gunjal PR, Ranade VV, Chaudhari RV. Computational study of a single-phase flow in packed beds of spheres. AIChE J 2005;51(2):365–78. 链接1

[10] Mackay A. A dense non-crystallographic packing of equal spheres. Acta Crystallogr 1962;15(9):916–8. 链接1

[11] Mueller GE. Numerically packing spheres in cylinders. Powder Technol 2005;159(2):105–10. 链接1

[12] Mueller GE. Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers. Powder Technol 1992;72 (3):269–75. 链接1

[13] Kamiuto K, Saitoh S. Fully developed forced-convection heat transfer in cylindrical packed beds with constant wall heat fluxes. JSME Int J Ser B Fluids Therm Eng 1996;39(2):395–401. 链接1

[14] McGeary RK. Mechanical packing of spherical particles. J Am Ceram Soc 1961;44(10):513–22. 链接1

[15] Freund H, Zeiser T, Huber F, Klemm E, Brenner G, Durst F, et al. Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation. Chem Eng Sci 2003;58(3–6):903–10. 链接1

[16] Benmansour A, Hamdan MA, Bengeuddach A. Experimental and numerical investigation of solid particles thermal energy storage unit. Appl Therm Eng 2006;26(5–6):513–8. 链接1

[17] Izquierdo-Barrientos MA, Sobrino C, Almendros-Ibáñez JA. Modeling and experiments of energy storage in a packed bed with PCM. Int J Multiph Flow 2016;86:1–9. 链接1

[18] Arkar C, Medved S. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochim Acta 2005;438(1–2):192–201. 链接1

[19] Bellan S, Gonzalez-Aguilar J, Romero M, Rahman MM, Goswami DY, Stefanakos EK, et al. Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material. Appl Therm Eng 2014;71(1):481–500. 链接1

[20] Karthikeyan S, Velraj R. Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers—a comparison between various mathematical models. Int J Therm Sci 2012;60:153–60. 链接1

[21] Bear J. Dynamics of fluids in porous media. New York: American Elsevier Publishing Company, Inc. 2013. 链接1

[22] Negrini AL, Fuelber A, Freire JT, Thoméo JC, Negrini AL. Fluid dynamics of air in a packed bed: velocity profiles and the continuum model assumption. Braz J Chem Eng 1999;16(4):421–32. 链接1

[23] Xia L, Zhang P, Wang RZ. Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model. Energy 2010;35(5):2022–32. 链接1

[24] Tabib MV, Johansen ST, Amini S. A 3D CFD-DEM methodology for simulating industrial scale packed bed chemical looping combustion reactors. Ind Eng Chem Res 2013;52(34):12041–58 链接1

[25] Zhong W, Yu A, Liu X, Tong Z, Zhang H. DEM/CFD-DEM modelling of nonspherical particulate systems: theoretical developments and applications. Powder Technol 2016;302:108–52. 链接1

[26] Pakrouh R, Hosseini MJ, Ranjbar AA, Bahrampoury R. Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model. Energy 2017;140:861–78. 链接1

[27] Boccardo G, Augier F, Haroun Y, Ferré D, Marchisio DL. Validation of a novel open-source work-flow for the simulation of packed-bed reactors. Chem Eng J 2015;279:809–20. 链接1

[28] Romero J, Soares JBP. A Monte Carlo method to quantify the effect of reactor residence time distribution on polyolefins made with heterogeneous catalysts: part II—packing density effects. Macromol React Eng 2018;12(4):1800002. 链接1

[29] Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem Eng J 2011;166(1):324–31. 链接1

[30] Dixon AG, Nijemeisland M, Stitt EH. Systematic mesh development for 3D CFD simulation of fixed beds: contact points study. Comput Chem Eng 2013;48:135–53. 链接1

[31] Argyropoulos CD, Markatos NC. Recent advances on the numerical modelling of turbulent flows. Appl Math Model 2015;39(2):693–732. 链接1

[32] Yakhot V, Smith LM. The renormalization group, the e-expansion and derivation of turbulence models. J Sci Comput 1992;7(1):35–61. 链接1

[33] Kim Y, Hossain A, Nakamura Y. Numerical study of melting of a phase change material (PCM) enhanced by deformation of a liquid–gas interface. Int J Heat Mass Transfer 2013;63:101–12. 链接1

[34] Partopour B, Dixon AG. An integrated workflow for resolved-particle packed bed models with complex particle shapes. Powder Technol 2017;322:258–72. 链接1

[35] Mueller GE. Radial porosity in packed beds of spheres. Powder Technol 2010;203(3):626–33. 链接1

相关研究